39 research outputs found

    The Expression of Inflammatory Mediators in Bladder Pain Syndrome

    No full text
    Design, setting, and participants: Fifteen women with BPS and 15 women with stress urinary incontinence without bladder pain were recruited from Cork University Maternity Hospital from October 2011 to October 2012. During cystoscopy, 5-mm bladder biopsies were taken and processed for gene expression analysis. The effect of the identified genes was tested in laboratory animals. Outcome measures and statistical analysis: We studied the expression of 96 inflammation related genes in diseased and healthy bladders. We measured the correlation between genes and patient clinical profiles using the Pearson correlation coefficient. Results and limitations: Analysis revealed 15 differentially expressed genes, confirmed in a replication study. FGF7 and CCL21 correlated significantly with clinical outcomes. Intravesical CCL21 instillation in rats caused increased bladder excitability and increased c-fos activity in spinal cord neurons. CCL21 atypical receptor knockout mice showed significantly more c-fos upon bladder stimulation with CCL21 than wild-type littermates. There was no change in FGF7-treated animals. The variability in patient samples presented as the main limitation. We used principal component analysis to identify similarities within the patient group. Conclusions: Our study identified two biologically relevant inflammatory mediators in BPS and demonstrated an increase in nociceptive signalling with CCL21. Manipulation of this ligand is a potential new therapeutic strategy for BPS. Patient summary: We compared gene expression in bladder biopsies of patients with bladder pain syndrome (BPS) and controls without pain and identified two genes that were increased in BPS patients and correlated with clinical profiles. We tested the effect of these genes in laboratory animals, confirming their role in bladder pain. Manipulating these genes in BPS is a potential treatment strategy

    Comparative Transcriptomics of Rat and Axolotl After Spinal Cord Injury Dissects Differences and Similarities in Inflammatory and Matrix Remodeling Gene Expression Patterns

    Get PDF
    Following spinal cord injury in mammals, maladaptive inflammation, and matrix deposition drive tissue scarring and permanent loss of function. In contrast, axolotls regenerate their spinal cord after severe injury fully and without scarring. To explore previously unappreciated molecules and pathways that drive tissue responses after spinal cord injury, we performed a 4-way intersection of rat and axolotl transcriptomics datasets and isolated shared genes with similar or differential expression at days 1, 3, and 7 after spinal cord injury in both species. Systems-wide differences and similarities between the two species are described in detail using public-domain computational tools and key differentially regulated genes are highlighted. Amongst persistent differential expression in matching neuronal genes (upregulated in axolotls but downregulated in rats) and nucleic acid metabolism genes (downregulated in axolotls but upregulated in rats), we found multiple extracellular matrix genes that were upregulated in both species after spinal cord injury and all time-points (days 1, 3, and 7), indicating the importance of extracellular matrix remodeling in wound healing. Moreover, the archetypal transcription factor SP1, which was consistently upregulated in rats but was unchanged in axolotls, was predicted as a potential transcriptional regulator of classic inflammatory response genes in rats most of which were not regulated in regenerating axolotls. This analysis offers an extensive comparative platform between a non-regenerating mammal and a regenerating urodele after spinal cord injury. To better understand regeneration vs. scarring mechanisms it is important to understand consistent molecular differences as well as similarities after experimental spinal cord injury

    Phosphatidylethanolamine binding protein-4 (PEBP4) is increased in IgA nephropathy and is associated with IgA-positive B-cells in affected kidneys

    Get PDF
    IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide and a major cause of chronic kidney disease and failure. IgAN is driven by an autoimmune reaction against galactose-deficient IgA1 that results in the generation of autoantibodies and large IgG-IgA immune complexes. Immune complexes accumulate in the glomerular mesangium causing chronic inflammation and renal scarring. A significant proportion of IgAN patients develop end-stage kidney disease and require dialysis or transplantation. Currently, there are no approved specific therapies that can ameliorate the systemic autoimmune reaction in IgAN and no biomarkers that can predict renal inflammation and scarring. In this study, we used shotgun LC-MS/MS proteomics to compare small volumes of urine from healthy subjects and IgAN patients. We identified multiple urine proteins with unknown renal or IgAN function. Our attention was captured by the increase of phosphatidylethanolamine binding protein-4 (PEBP4) in IgAN urine. The function of PEBP4 in IgAN or renal disease is unknown. Increased levels of urine and serum PEBP4 were subsequently validated in different cohorts of IgAN patients and PEBP4 was linked to declining kidney function in IgAN. Strong PEBP4 staining was sporadically seen in IgAN kidney biopsies, colocalising with IgA in glomeruli and in the lumen of kidney tubules. In a small number of IgAN biopsies, PEBP4 colocalised with IgA and CD19 while the increased excretion of PEBP4 in IgAN urine was accompanied by increased excretion of classic B-cell factors BAFF, BCMA and TACI as well as IgA and IgG. PEBP4 is a new IgAN-related protein with unknown function and a likely renal disease marker in urine and serum

    Proteomics of acute coronary syndromes

    No full text
    Acute coronary syndromes (ACS), such as unstable angina, acute myocardial infarction, and sudden cardiac death, are commonly associated with the presence of vulnerable plaques in coronary arteries. Rupture or erosion of vulnerable plaques results in the formation of luminal thrombi due to the physical contact between platelets and thrombogenic elements within the atherosclerotic lesions. Considering the socioeconomic burden of ACS, it is imperative that the scientific community achieves a clear understanding of the multifaceted pathophysiology of vulnerable atheroma to identify accurate prognostic biomarkers and therapeutic targets. The analytical power of modern proteomic technologies could facilitate our understanding of vulnerable plaques and lead to the discovery of novel therapeutic targets and diagnostic biomarkers

    Regulation of IL-10 by chondroitinase ABC promotes a distinct immune response following spinal cord injury

    No full text
    Chondroitinase ABC (ChABC) has striking effects on promoting neuronal plasticity after spinal cord injury (SCI), but little is known about its involvement in other pathological mechanisms. Recent work showed that ChABC might also modulate the immune response by promoting M2 macrophage polarization. Here we investigate in detail the immunoregulatory effects of ChABC after SCI in rats. Initially, we examined the expression profile of 16 M1/M2 macrophage polarization markers at 3 h and 7 d postinjury. ChABC treatment had a clear effect on the immune signature after SCI. More specifically, ChABC increased the expression of the anti-inflammatory cytokine IL-10, accompanied by a reduction in the proinflammatory cytokine IL-12B in injured spinal tissue. These effects were associated with a distinct, IL-10-mediated anti-inflammatory response in ChABC-treated spinal cords. Mechanistically, we show that IL-10 expression is driven by tissue injury and macrophage infiltration, while the p38 MAPK is the central regulator of IL-10 expression in vivo. These findings provide novel insights into the effects of ChABC in the injured spinal cord and explain its immunoregulatory activity
    corecore