229 research outputs found

    Impact of stress on metabolism and energy balance

    Get PDF
    The stress response mobilizes the body's energy stores in order to respond to a threatening situation. A striking observation is the diversity of metabolic changes that can occur in response to stress. On one hand acute intense stress is commonly associated with feeding suppression and reduced body weight gain. The activation of the hypothalamic–pituitary–adrenal axis and the release of corticotropin-releasing hormone (CRH) might partially explain the anorexigenic effects of acute stress. CRH can also stimulate the sympathetic nervous system and catecholamine release, inducing hypophagia and weight loss, through their effects on the liver and on white and brown adipose tissue. On the other hand, chronic stress can lead to dietary over-consumption (especially palatable foods), increased visceral adiposity and weight gain. These obesogenic effects of stress are mainly explained by the chronic release of glucocorticoids and neuropeptide Y. Stressful situations can activate all of these systems together, and the metabolic outcome of stress exposure is determined by a host of intrinsic and external factors. If we are to find new ways to limit the development of stress-linked cardiometabolic diseases, we need to discover why, in some circumstances, the pro-obesogenic effects of stress outweigh its anorexigenic effects. The equilibrium between the different components of the stress response that accompany chronic stress situations could be crucial to understand and prevent the long-lasting adverse metabolic effects induced by stress

    Toward a consensus nomenclature for ghrelin, its non-acylated form, liver expressed antimicrobial peptide 2 and growth hormone secretagogue receptor

    Get PDF
    The stomach-derived octanoylated peptide ghrelin was discovered in 1999 and recognized as an endogenous agonist of the growth hormone secretagogue receptor (GHSR). Subsequently, ghrelin has been shown to play key roles in controlling not only growth hormone secretion, but also a variety of other physiological functions including, but not limited to, food intake, reward-related behaviors, glucose homeostasis and gastrointestinal tract motility. Importantly, a non-acylated form of ghrelin, desacyl-ghrelin, can also be detected in biological samples. Desacyl-ghrelin, however, does not bind to GHSR at physiological levels, and its physiological role has remained less well-characterized than that of ghrelin. Ghrelin and desacyl-ghrelin are currently referred to in the literature using many different terms, highlighting the need for a consistent nomenclature. The variability of terms used to designate ghrelin can lead not only to confusion, but also to miscommunication, especially for those who are less familiar with the ghrelin literature. Thus, we conducted a survey among experts who have contributed to the ghrelin literature aiming to identify whether a consensus may be reached. Based on the results of this consensus, we propose using the terms “ghrelin” and “desacyl-ghrelin” to refer to the hormone itself and its non-acylated form, respectively. Based on the results of this consensus, we further propose using the terms “GHSR” for the receptor, and “LEAP2” for liver-expressed antimicrobial peptide 2, a recently recognized endogenous GHSR antagonist/inverse agonist.Fil: Perello, Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Multidisciplinario de Biología Celular. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Multidisciplinario de Biología Celular. Universidad Nacional de La Plata. Instituto Multidisciplinario de Biología Celular; ArgentinaFil: Dickson, Suzanne L.. The Sahlgrenska Academy at the University of Gothenburg; SueciaFil: Zigman, Jeffrey M.. UT Southwestern Medical Center; Estados UnidosFil: Leggio, Lorenzo. National Institutes of Health; Estados Unido

    Rewarding behavior with a sweet food strengthens its valuation

    Get PDF
    Sweet foods are commonly used as rewards for desirable behavior, specifically among children. This study examines whether such practice may contribute to reinforce the valuation of these foods. Two experiments were conducted, one with children, the other with rats. The first study, conducted with first graders (n = 214), shows that children who receive a food reward for performing a cognitive task subsequently value the food more compared to a control group who received the same food without performing any task. The second study, conducted on rats (n = 64), shows that rewarding with food also translates into higher calorie intake over a 24-hour period. These results suggest that the common practice of rewarding children with calorie-dense sweet foods is a plausible contributing factor to obesity and might therefore be ill advised. © 2021 This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

    Behavioral consequences of exposure to a high fat diet during the post-weaning period in rats

    Get PDF
    AbstractWe explored the impact of exposure to an obesogenic diet (High Fat–High Sucrose; HFS) during the post-weaning period on sweet preference and behaviors linked to reward and anxiety. All rats were fed chow. In addition a HFS-transient group had access to this diet for 10days from post-natal (PN) day 22 and a HFS-continuous group continued access until adult. Behavioral tests were conducted immediately after PN 32 (adolescence) or after PN 60 (adult) and included: the condition place preference (CPP) test for chocolate, sugar and saccharin preference (anhedonia), the elevated plus maze (anxiety-like behavior) and the locomotor response to quinpirole in the open field. Behavior was unaltered in adult rats in the HFS-transient group, suggesting that a short exposure to this obesogenic food does not induce long-term effects in food preferences, reward perception and value of palatable food, anxiety or locomotor activity. Nevertheless, rats that continued to have access to HFS ate less chocolate during CPP training and consumed less saccharin and sucrose when tested in adolescence, effects that were attenuated when these rats became adult. Moreover, behavioral effects linked to transient HFS exposure in adolescence were not sustained if the rats did not remain on that diet until adult. Collectively our data demonstrate that exposure to fat and sucrose in adolescence can induce immediate reward hypofunction after only 10days on the diet. Moreover, this effect is attenuated when the diet is extended until the adult period, and completely reversed when the HFS diet is removed

    Nutritional psychiatry:towards improving mental health by what you eat

    Get PDF
    Does it matter what we eat for our mental health? Accumulating data suggests that this may indeed be the case and that diet and nutrition are not only critical for human physiology and body composition, but also have significant effects on mood and mental wellbeing. While the determining factors of mental health are complex, increasing evidence indicates a strong association between a poor diet and the exacerbation of mood disorders, including anxiety and depression, as well as other neuropsychiatric conditions. There are common beliefs about the health effects of certain foods that are not supported by solid evidence and the scientific evidence demonstrating the unequivocal link between nutrition and mental health is only beginning to emerge. Current epidemiological data on nutrition and mental health do not provide information about causality or underlying mechanisms. Future studies should focus on elucidating mechanism. Randomized controlled trials should be of high quality, adequately powered and geared towards the advancement of knowledge from population-based observations towards personalized nutrition. Here, we provide an overview of the emerging field of nutritional psychiatry, exploring the scientific evidence exemplifying the importance of a well-balanced diet for mental health. We conclude that an experimental medicine approach and a mechanistic understanding is required to provide solid evidence on which future policies on diet and nutrition for mental health can be based

    Ghrelin is related to lower brain reward activation during touch

    Get PDF
    The gut hormone ghrelin drives food motivation and increases food intake, but it is also involved in the anticipation of and response to rewards other than food. This pre-registered study investigated how naturally varying ghrelin concentrations affect the processing of touch as a social reward in humans. Sixty-seven volunteers received slow caressing touch (so-called CT-targeted touch) as a social reward and control touch on their shins during 3T functional imaging on two test days. On one occasion, participants were fasted, and on another, they received a meal. On each occasion, plasma ghrelin was measured at three time points. All touch was rated as more pleasant after the meal, but there was no association between ghrelin concentrations and pleasantness. CT-targeted touch was rated as the most pleasant and activated somatosensory and reward networks (whole brain). A region-of-interest in the right medial orbitofrontal cortex (mOFC) showed lower activation during all touches, the higher the ghrelin concentrations were. During CT-targeted touch, a larger satiety response (ghrelin decrease after the meal) was associated with higher mOFC activation, and this mOFC activation was associated with higher experienced pleasantness. Overall, higher ghrelin concentrations appear to be related to a lower reward value for touch. Ghrelin may reduce the value of social stimuli, such as touch, to promote food search and intake in a state of low energy. This suggests that the role of ghrelin goes beyond assigning value to food reward.publishedVersio

    Influence of ghrelin on the central serotonergic signaling system in mice

    Get PDF
    AbstractThe central ghrelin signaling system engages key pathways of importance for feeding control, recently shown to include those engaged in anxiety-like behavior in rodents. Here we sought to determine whether ghrelin impacts on the central serotonin system, which has an important role in anxiety. We focused on two brain areas, the amygdala (of importance for the mediation of fear and anxiety) and the dorsal raphe (i.e. the site of origin of major afferent serotonin pathways, including those that project to the amygdala). In these brain areas, we measured serotonergic turnover (using HPLC) and the mRNA expression of a number of serotonin-related genes (using real-time PCR). We found that acute central administration of ghrelin to mice increased the serotonergic turnover in the amygdala. It also increased the mRNA expression of a number of serotonin receptors, both in the amygdala and in the dorsal raphe. Studies in ghrelin receptor (GHS-R1A) knock-out mice showed a decreased mRNA expression of serotonergic receptors in both the amygdala and the dorsal raphe, relative to their wild-type littermates. We conclude that the central serotonin system is a target for ghrelin, providing a candidate neurochemical substrate of importance for ghrelin's effects on mood
    corecore