115 research outputs found

    Impaired mitophagy in Sanfilippo A mice causes hypertriglyceridemia and brown adipose tissue activation

    Get PDF
    Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary

    Elevated cerebral spinal fluid biomarkers in children with mucopolysaccharidosis I-H.

    Get PDF
    Mucopolysaccharidosis (MPS) type-IH is a lysosomal storage disease that results from mutations in the IDUA gene causing the accumulation of glycosaminoglycans (GAGs). Historically, children with the severe phenotype, MPS-IH (Hurler syndrome) develop progressive neurodegeneration with death in the first decade due to cardio-pulmonary complications. New data suggest that inflammation may play a role in MPS pathophysiology. To date there is almost no information on the pathophysiologic changes within the cerebral spinal fluid (CSF) of these patients. We evaluated the CSF of 25 consecutive patients with MPS-IH. While CSF glucose and total protein were within the normal range, we found a significantly mean elevated CSF opening pressure at 24 cm H2O (range 14-37 cm H2O). We observed a 3-fold elevation in CSF heparan sulfate and a 3-8 fold increase in MPS-IH specific non-reducing ends, I0S0 and I0S6. Cytokine analyses in CSF of children with MPS-IH showed significantly elevated inflammatory markers including: MCP-1 SDF-1a, IL-Ra, MIP-1b, IL-8, and VEGF in comparison to unaffected children. This is the largest report of CSF characteristics in children with MPS-IH. Identification of key biomarkers may provide further insight into the inflammatory-mediated mechanisms related to MPS diseases and perhaps lead to improved targeted therapies

    Arterial pathology in canine mucopolysaccharidosis-I and response to therapy.

    Get PDF
    Mucopolysaccharidosis-I (MPS-I) is an inherited deficiency of α-L-iduronidase (IdU) that causes lysosomal accumulation of glycosaminoglycans (GAG) in a variety of parenchymal cell types and connective tissues. The fundamental link between genetic mutation and tissue GAG accumulation is clear, but relatively little attention has been given to the morphology or pathogenesis of associated lesions, particularly those affecting the vascular system. The terminal parietal branches of the abdominal aorta were examined from a colony of dogs homozygous (MPS-I affected) or heterozygous (unaffected carrier) for an IdU mutation that eliminated all enzyme activity, and in affected animals treated with human recombinant IdU. High-resolution computed tomography showed that vascular wall thickenings occurred in affected animals near branch points, and associated with low endothelial shear stress. Histologically these asymmetric 'plaques' entailed extensive intimal thickening with disruption of the internal elastic lamina, occluding more than 50% of the vascular lumen in some cases. Immunohistochemistry was used to show that areas of sclerosis contained foamy (GAG laden) macrophages, fibroblasts and smooth muscle cells, with loss of overlying endothelial basement membrane and claudin-5 expression. Lesions contained scattered cells expressing nuclear factor-κβ (p65), increased fibronectin and transforming growth factor β-1 signaling (with nuclear Smad3 accumulation) in comparison to unaffected vessels. Intimal lesion development and morphology was improved by intravenous recombinant enzyme treatment, particularly with immune tolerance to this exogenous protein. The progressive sclerotic vasculopathy of MPS-I shares some morphological and molecular similarities to atherosclerosis, including formation in areas of low shear stress near branch points, and can be reduced or inhibited by intravenous administration of recombinant IdU

    Immune-Mediated Inflammation May Contribute to the Pathogenesis of Cardiovascular Disease in Mucopolysaccharidosis Type I.

    Get PDF
    BackgroundCardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or mucopolysaccharidosis type I, continues in patients both untreated and treated with hematopoietic stem cell transplantation or intravenous enzyme replacement. Few studies have examined the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon arterial gene expression to understand the pathogenesis of cardiovascular disease.MethodsGene expression in carotid artery, ascending, and descending aortas from four non-tolerized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared with expression in corresponding vascular segments from three normal, age-matched dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-free method of categorizing expression level and significance into discrete modules. Genes were further categorized based on module-trait relationships. Expression of clusterin, a protein implicated in other etiologies of cardiovascular disease, was assessed in canine and murine mucopolysaccharidosis type I aortas via Western blot and in situ immunohistochemistry.ResultsGene families with more than two-fold, significant increased expression involved lysosomal function, proteasome function, and immune regulation. Significantly downregulated genes were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and mice.ConclusionsOverexpression of lysosomal and proteasomal-related genes are expected responses to cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation of immunity-related genes implicates the potential involvement of glycosaminoglycan-induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial disease, for which clusterin represents a potential biomarker

    Fatal COVID-19 infection in a patient with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: A case report

    Get PDF
    Long-chain fatty-acyl CoA dehydrogenase deficiency (LCHADD) is an inborn error of long chain fatty acid oxidation with various features including hypoketotic hypoglycemia, recurrent rhabdomyolysis, pigmentary retinopathy, peripheral neuropathy, cardiomyopathy, and arrhythmias. Various stresses trigger metabolic decompensation. Coronavirus disease 2019 (COVID-19) is a pandemic caused by the RNA virus SARS-CoV-2 with diverse presentations ranging from respiratory symptoms to myocarditis. We report a case of a patient with LCHADD who initially presented with typical metabolic decompensation symptoms including nausea, vomiting, and rhabdomyolysis in addition to mild cough, and was found to have COVID-19. She developed acute respiratory failure and refractory hypotension from severe cardiomyopathy which progressed to multiple organ failure and death. Our case illustrates the need for close monitoring of cardiac function in patients with a long-chain fatty acid oxidation disorder

    treatment of brain disease in the mucopolysaccharidoses

    Get PDF
    Abstract The mucopolysaccharidosis (MPS) disorders are a group of lysosomal storage diseases caused by lysosomal enzyme deficits that lead to glycosaminoglycan accumulation, affecting various tissues throughout the body based on the specific enzyme deficiency. These disorders are characterized by their progressive nature and a variety of somatic manifestations and neurological symptoms. There are established treatments for some MPS disorders, but these mostly alleviate somatic and non-neurological symptoms and do not cure the disease. Patients with MPS I, II, III, and VII can present with neurological manifestations such as neurocognitive decline and behavioral problems. Treatment of these neurological manifestations remains challenging due to the blood-brain barrier (BBB) that limits delivery of therapeutic agents to the central nervous system (CNS). New therapies that circumvent this barrier and target brain disease in MPS are currently under development. They primarily focus on facilitating penetration of drugs through the BBB, delivery of recombinant enzyme to the brain by gene therapy, or direct CNS administration. This review summarizes existing and potential future treatment approaches that target brain disease in MPS. The information in this review is based on current literature and presentations and discussions during a closed meeting by an international group of experts with extensive experience in managing and treating MPS

    Whole-genome and long-read sequencing identify a novel mechanism in RFC1 resulting in CANVAS syndrome

    Get PDF
    OBJECTIVES: Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS) results from biallelic intronic pentanucleotide repeats in METHODS: We performed whole-genome sequencing (WGS) on peripheral blood DNA samples from the proband and his unaffected mother. We performed DNA long-read sequencing and synthesized complementary DNA from RNA using peripheral blood from the proband. RESULTS: WGS confirmed the maternally inherited DISCUSSION: We report an adult with CANVAS due to compound heterozygous pathogeni

    Brain transplantation of genetically corrected Sanfilippo type B neural stem cells induces partial cross-correction of the disease

    Get PDF
    Sanfilippo syndrome type B (mucopolysaccharidosis type IIIB) is a recessive genetic disorder that severely affects the brain due to a deficiency in the enzyme α
    • …
    corecore