7,305 research outputs found

    A computer vision approach to classification of birds in flight from video sequences

    Get PDF
    Bird populations are an important bio-indicator; so collecting reliable data is useful for ecologists helping conserve and manage fragile ecosystems. However, existing manual monitoring methods are labour-intensive, time-consuming, and error-prone. The aim of our work is to develop a reliable system, capable of automatically classifying individual bird species in flight from videos. This is challenging, but appropriate for use in the field, since there is often a requirement to identify in flight, rather than when stationary. We present our work in progress, which uses combined appearance and motion features to classify and present experimental results across seven species using Normal Bayes classifier with majority voting and achieving a classification rate of 86%

    Fractionation effects in phase equilibria of polydisperse hard sphere colloids

    Full text link
    The equilibrium phase behaviour of hard spheres with size polydispersity is studied theoretically. We solve numerically the exact phase equilibrium equations that result from accurate free energy expressions for the fluid and solid phases, while accounting fully for size fractionation between coexisting phases. Fluids up to the largest polydispersities that we can study (around 14%) can phase separate by splitting off a solid with a much narrower size distribution. This shows that experimentally observed terminal polydispersities above which phase separation no longer occurs must be due to non-equilibrium effects. We find no evidence of re-entrant melting; instead, sufficiently compressed solids phase separate into two or more solid phases. Under appropriate conditions, coexistence of multiple solids with a fluid phase is also predicted. The solids have smaller polydispersities than the parent phase as expected, while the reverse is true for the fluid phase, which contains predominantly smaller particles but also residual amounts of the larger ones. The properties of the coexisting phases are studied in detail; mean diameter, polydispersity and volume fraction of the phases all reveal marked fractionation. We also propose a method for constructing quantities that optimally distinguish between the coexisting phases, using Principal Component Analysis in the space of density distributions. We conclude by comparing our predictions to perturbative theories for near-monodisperse systems and to Monte Carlo simulations at imposed chemical potential distribution, and find excellent agreement.Comment: 21 pages, 23 figures, 2 table

    Studies in the Lake Ontario Basin using ERTS-1 and high altitude data

    Get PDF
    Studies in the Lake Ontario Basin are designed to provide input for models of river basin discharge and macro-scale features of lake circulation. Lake studies appear to require high altitude imagery to record the dynamic features of Lake Ontario so that ERTS-1 data may be interpreted. Land area studies require input of soil moisture, land use and soil-sediment-geomorphology measurements some of which appear to be available, on a regional scale from ERTS-1 products

    Distribution of Non-uniform Demagnetization Fields in Paramagnetic Bulk Solids

    Full text link
    A general calculation for the distribution of non-uniform demagnetization fields in paramagnetic bulk solids is described and the fields for various sample geometries are calculated. Cones, ellipsoids, paraboloids and hyperboloids with similar sample aspect ratios are considered. Significant differences in their demagnetization fields are observed. The calculation shows that the demagnetization field magnitudes decrease along the axis of symmetry (along zz) where an externally applied magnetic field is aligned, and increase in the vicinity of the lateral surfaces with the largest field values found in the cone and the narrowest field distributions found in the hyperboloid. Application is made to the theoretical modeling of the 1^{1}H-NMR spectra of a single crystal of field-induced superconductor λ\lambda-(BETS)2_{2}FeCl4_{4} with a rectangular sample geometry, providing a good fit to the measured NMR spectra. This calculation is also applicable to diamagnetic or ferromagnetic materials in general.Comment: 7 pages, 7 figures, submitted to Physical Review B (Corresponding author: [email protected]

    The Galaxy Population of Cluster RXJ0848+4453 at z=1.27

    Get PDF
    We present a study of the galaxy population in the cluster RXJ0848+4453 at z=1.27, using deep HST NICMOS and WFPC2 images. We morphologically classify all galaxies to K_s=20.6 that are covered by the HST imaging, and determine photometric redshifts using deep ground based BRIzJK_s photometry. Of 22 likely cluster members with morphological classifications, eleven (50%) are classified as early-type galaxies, nine (41%) as spiral galaxies, and two (9%) as ``merger/peculiar''. At HST resolution the second brightest cluster galaxy is resolved into a spectacular merger between three red galaxies of similar luminosity, separated from each other by ~6 kpc, with an integrated magnitude K=17.6 (~3 L* at z=1.27). The two most luminous early-type galaxies also show evidence for recent or ongoing interactions. Mergers and interactions between galaxies are possible because RXJ0848+4453 is not yet relaxed. The fraction of early-type galaxies in our sample is similar to that in clusters at 0.5<z<1, and consistent with a gradual decrease of the number of early-type galaxies in clusters from z=0 to z=1.3. We find evidence that the color-magnitude relation of the early-type galaxies is less steep than in the nearby Coma cluster. This may indicate that the brightest early-type galaxies have young stellar populations at z=1.27, but is also consistent with predictions of single age ``monolithic'' models with a galactic wind. The scatter in the color-magnitude relation is ~0.04 in rest frame U-V, similar to that in clusters at 0<z<1. Taken together, these results show that luminous early-type galaxies exist in clusters at z~1.3, but that their number density may be smaller than in the local Universe. Additional observations are needed to determine whether the brightest early-type galaxies harbor young stellar populations.Comment: Accepted for publication in The Astrophysical Journal Letter

    Equilibrium phase behavior of polydisperse hard spheres

    Full text link
    We calculate the phase behavior of hard spheres with size polydispersity, using accurate free energy expressions for the fluid and solid phases. Cloud and shadow curves, which determine the onset of phase coexistence, are found exactly by the moment free energy method, but we also compute the complete phase diagram, taking full account of fractionation effects. In contrast to earlier, simplified treatments we find no point of equal concentration between fluid and solid or re-entrant melting at higher densities. Rather, the fluid cloud curve continues to the largest polydispersity that we study (14%); from the equilibrium phase behavior a terminal polydispersity can thus only be defined for the solid, where we find it to be around 7%. At sufficiently large polydispersity, fractionation into several solid phases can occur, consistent with previous approximate calculations; we find in addition that coexistence of several solids with a fluid phase is also possible

    Dispersity-Driven Melting Transition in Two Dimensional Solids

    Full text link
    We perform extensive simulations of 10410^4 Lennard-Jones particles to study the effect of particle size dispersity on the thermodynamic stability of two-dimensional solids. We find a novel phase diagram in the dispersity-density parameter space. We observe that for large values of the density there is a threshold value of the size dispersity above which the solid melts to a liquid along a line of first order phase transitions. For smaller values of density, our results are consistent with the presence of an intermediate hexatic phase. Further, these findings support the possibility of a multicritical point in the dispersity-density parameter space.Comment: In revtex format, 4 pages, 6 postscript figures. Submitted to PR

    Multi-wavelength constraints on cosmic-ray leptons in the Galaxy

    Full text link
    Cosmic rays (CRs) interact with the gas, the radiation field and the magnetic field in the Milky Way, producing diffuse emission from radio to gamma rays. Observations of this diffuse emission and comparison with detailed predictions are powerful tools to unveil the CR properties and to study CR propagation. We present various GALPROP CR propagation scenarios based on current CR measurements. The predicted synchrotron emission is compared to radio surveys, and synchrotron temperature maps from WMAP and Planck, while the predicted interstellar gamma-ray emission is compared to Fermi-LAT observations. We show how multi-wavelength observations of the Galactic diffuse emission can be used to help constrain the CR lepton spectrum and propagation. Finally we discuss how radio and microwave data could be used in understanding the diffuse Galactic gamma-ray emission observed with Fermi-LAT, especially at low energies.Comment: 8 pages, 5 figures; in Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague (The Netherlands); Oral contributio

    Simulations for single-dish intensity mapping experiments

    Full text link
    HI intensity mapping is an emerging tool to probe dark energy. Observations of the redshifted HI signal will be contaminated by instrumental noise, atmospheric and Galactic foregrounds. The latter is expected to be four orders of magnitude brighter than the HI emission we wish to detect. We present a simulation of single-dish observations including an instrumental noise model with 1/f and white noise, and sky emission with a diffuse Galactic foreground and HI emission. We consider two foreground cleaning methods: spectral parametric fitting and principal component analysis. For a smooth frequency spectrum of the foreground and instrumental effects, we find that the parametric fitting method provides residuals that are still contaminated by foreground and 1/f noise, but the principal component analysis can remove this contamination down to the thermal noise level. This method is robust for a range of different models of foreground and noise, and so constitutes a promising way to recover the HI signal from the data. However, it induces a leakage of the cosmological signal into the subtracted foreground of around 5%. The efficiency of the component separation methods depends heavily on the smoothness of the frequency spectrum of the foreground and the 1/f noise. We find that as, long as the spectral variations over the band are slow compared to the channel width, the foreground cleaning method still works.Comment: 14 pages, 12 figures. Submitted to MNRA
    • …
    corecore