17 research outputs found

    Polydnavirus genomes reflect their dual roles as mutualists and pathogens

    Get PDF
    AbstractSymbionts often exhibit significant reductions in genome complexity while pathogens often exhibit increased complexity through acquisition and diversification of virulence determinants. A few organisms have evolved complex life cycles in which they interact as symbionts with one host and pathogens with another. How the predicted and opposing influences of symbiosis and pathogenesis affect genome evolution in such instances, however, is unclear. The Polydnaviridae is a family of double-stranded (ds) DNA viruses associated with parasitoid wasps that parasitize other insects. Polydnaviruses (PDVs) only replicate in wasps but infect and cause severe disease in parasitized hosts. This disease is essential for survival of the parasitoid's offspring. Thus, a true mutualism exists between PDVs and wasps as viral transmission depends on parasitoid survival and parasitoid survival depends on viral infection of the wasp's host. To investigate how life cycle and ancestry affect PDVs, we compared the genomes of Campoletis sonorensis ichnovirus (CsIV) and Microplitis demolitor bracovirus (MdBV). CsIV and MdBV have no direct common ancestor, yet their encapsidated genomes share several features including segmentation, diversification of virulence genes into families, and the absence of genes required for replication. In contrast, CsIV and MdBV share few genes expressed in parasitized hosts. We conclude that the similar organizational features of PDV genomes reflect their shared life cycle but that PDVs associated with ichneumonid and braconid wasps have likely evolved different strategies to cause disease in the wasp's host and promote parasitoid survival

    Evaluating evidence-based content, features of exercise instruction, and expert involvement in physical activity apps for pregnant women: systematic search and content analysis

    Get PDF
    Background: Guidelines for physical activity and exercise during pregnancy recommend that all women without contraindications engage in regular physical activity to improve both their own health and the health of their baby. Many women are uncertain how to safely engage in physical activity and exercise during this life stage and are increasingly using mobile apps to access health-related information. However, the extent to which apps that provide physical activity and exercise advice align with current evidence-based pregnancy recommendations is unclear. Objective: This study aims to conduct a systematic search and content analysis of apps that promote physical activity and exercise in pregnancy to examine the alignment of the content with current evidence-based recommendations; delivery, format, and features of physical activity and exercise instruction; and credentials of the app developers. Methods: Systematic searches were conducted in the Australian App Store and Google Play Store in October 2020. Apps were identified using combinations of search terms relevant to pregnancy and exercise or physical activity and screened for inclusion (with a primary focus on physical activity and exercise during pregnancy, free to download or did not require immediate paid subscription, and an average user rating of ≥4 out of 5). Apps were then independently reviewed using an author-designed extraction tool. Results: Overall, 27 apps were included in this review (Google Play Store: 16/27, 59%, and App Store: 11/27, 41%). Two-thirds of the apps provided some information relating to the frequency, intensity, time, and type principles of exercise; only 11% (3/27) provided this information in line with current evidence-based guidelines. Approximately one-third of the apps provided information about contraindications to exercise during pregnancy and referenced the supporting evidence. None of the apps actively engaged in screening for potential contraindications. Only 15% (4/27) of the apps collected information about the user’s current exercise behaviors, 11% (3/27) allowed users to personalize features relating to their exercise preferences, and a little more than one-third provided information about developer credentials. Conclusions: Few exercise apps designed for pregnancy aligned with current evidence-based physical activity guidelines. None of the apps screened users for contraindications to physical activity and exercise during pregnancy, and most lacked appropriate personalization features to account for an individual’s characteristics. Few involved qualified experts during the development of the app. There is a need to improve the quality of apps that promote exercise in pregnancy to ensure that women are appropriately supported to engage in exercise and the potential risk of injury, complications, and adverse pregnancy outcomes for both mother and child is minimized. This could be done by providing expert guidance that aligns with current recommendations, introducing screening measures and features that enable personalization and tailoring to individual users, or by developing a recognized system for regulating apps

    Technically advanced and SF6-free 145 kV blue GIS

    Get PDF
    SF6, the most commonly used arc extinguishing and insulating gas in gas-insulated switchgears (GIS), is a greenhouse gas with high global warming potential, requiring careful handling throughout its life cycle. In order to reduce the GIS-related global warming impact, innovative solutions using alternative gases have been developed by different manufacturers, especially the blue GIS from Siemens – available for 145 kV / 40 kA / 3150 A – with clean air insulation and vacuum switching technology shows many technical advantages

    A Decade of Incorporating Social Sciences in the Integrated Marine Biosphere Research Project (IMBeR): Much Done, Much to Do?

    Get PDF
    Successful management and mitigation of marine challenges depends on cooperation and knowledge sharing which often occurs across culturally diverse geographic regions. Global ocean science collaboration is therefore essential for developing global solutions. Building effective global research networks that can enable collaboration also need to ensure inter- and transdisciplinary research approaches to tackle complex marine socio-ecological challenges. To understand the contribution of interdisciplinary global research networks to solving these complex challenges, we use the Integrated Marine Biosphere Research (IMBeR) project as a case study. We investigated the diversity and characteristics of 1,827 scientists from 11 global regions who were attendees at different IMBeR global science engagement opportunities since 2009. We also determined the role of social science engagement in natural science based regional programmes (using key informants) and identified the potential for enhanced collaboration in the future. Event attendees were predominantly from western Europe, North America, and East Asia. But overall, in the global network, there was growing participation by females, students and early career researchers, and social scientists, thus assisting in moving toward interdisciplinarity in IMBeR research. The mainly natural science oriented regional programmes showed mixed success in engaging and collaborating with social scientists. This was mostly attributed to the largely natural science (i.e., biological, physical) goals and agendas of the programmes, and the lack of institutional support and push to initiate connections with social science. Recognising that social science research may not be relevant to all the aims and activities of all regional programmes, all researchers however, recognised the (potential) benefits of interdisciplinarity, which included broadening scientists’ understanding and perspectives, developing connections and interlinkages, and making science more useful. Pathways to achieve progress in regional programmes fell into four groups: specific funding, events to come together, within-programme-reflections, and social science champions. Future research programmes should have a strategic plan to be truly interdisciplinary, engaging natural and social sciences, as well as aiding early career professionals to actively engage in such programmes.This publication resulted in part from support from the U.S. National Science Foundation (Grant OCE-1840868) to the Scientific Committee on Oceanic Research (SCOR)

    Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator

    No full text
    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1-transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1–NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments
    corecore