2,300 research outputs found
SIMULATION OF BREED AND CROSSBREEDING EFFECTS ON COSTS OF PORK PRODUCTION
A bio-economic model of swine production was used to simulate expected performance effects of breeds in alternative breeding systems on total costs/100 kg of live weight (EWW) or/l00 kg lean (ELW) for marketing at 100 kg live weight and on costs/100 kg lean for marketing at mean 185-d weight (ELA). Effects of heterosis and of six U.S. breeds were simulated for integrated industry purebred (P), two-breed specific (2S), backcross (2B) and rotation cross (2R), and three-breed specific (3S) and rotation cross (3R) breeding systems. Traits considered were age at puberty (-PUB), conception rate (CR), litter size born alive (NBA), preweaning viability (VIAB), milk production (MILK), age at 100 kg live weight (-DAYS) and empty body fat percentage (-FAT). Cost reductions from crossbreeding systems were greater for ELA than for ELW or EWW, ranging from -3 to -5% for 2S, -6 to -7% for 2B and 2R, and -7 to -9% for 3S and 3R. Reductions in nonfeed costs were much greater than those in feed costs for EWW and ELW (-4 to -12% vs -2 to -4%), and especially for ELA (-9 to -17% vs -1 to -2%). Order of maternal trait importance in ranking breeds was NBA, VIAB, CR, MILK and -PUB for P, 2R and 3R systems and as maternal breeds in 2S and 3S systems. For cost of lean, -FAT was as important as NBA in all except maternal breed roles. For ELA, -DAYS was important in all breed roles, but not for EWW and ELW, especially in maternal breed roles. In ranking paternal breeds for use in 2S and 3S systems, the important traits were only VIAB for EWW, VIAB and -FAT for ELW, but VIAB,-FAT and -DAYS for ELA. Existing breeds ranked differently as paternal breeds than as maternal or general purpose breeds. Complementary paternal-maternal effects permitted greater cost reductions from best 3S (-7 to -10%) than from best 3R (-6 to -8%) breed combinations. Maternal breeds in crosses benefited from superiority in components of both sow and pig performance
Electric-Field Tuning of Spin-Dependent Exciton-Exciton Interactions in Coupled Quantum Wells
We have shown experimentally that an electric field decreases the energy
separation between the two components of a dense spin-polarized exciton gas in
a coupled double quantum well, from a maximum splitting of meV to
zero, at a field of 35 kV/cm. This decrease, due to the field-induced
deformation of the exciton wavefunction, is explained by an existing
calculation of the change in the spin-dependent exciton-exciton interaction
with the electron-hole separation. However, a new theory that considers the
modification of screening with that separation is needed to account for the
observed dependence on excitation power of the individual energies of the two
exciton components.Comment: 5 pages, 4 eps figures, RevTeX, Physical Review Letters (in press
Variability in X-ray induced effects in [Rh(COD)Cl]₂ with changing experimental parameters
X-ray characterisation methods have undoubtedly enabled cutting-edge advances in all aspects of materials research. Despite the enormous breadth of information that can be extracted from these techniques, the challenge of radiation-induced sample change and damage remains prevalent. This is largely due to the emergence of modern, high-intensity X-ray source technologies and the growing potential to carry out more complex, longer duration in situ or in operando studies. The tunability of synchrotron beamlines enables the routine application of photon energy-dependent experiments. This work explores the structural stability of [Rh(COD)Cl]2, a widely used catalyst and precursor in the chemical industry, across a range of beamline parameters that target X-ray energies of 8 keV, 15 keV, 18 keV and 25 keV, on a powder X-ray diffraction synchrotron beamline at room temperature. Structural changes are discussed with respect to absorbed X-ray dose at each experimental setting associated with the respective photon energy. In addition, the X-ray radiation hardness of the catalyst is discussed, by utilising the diffraction data collected at the different energies to determine a dose limit, which is often considered in protein crystallography and typically overlooked in small molecule crystallography. This work not only gives fundamental insight into how damage manifests in this organometallic catalyst, but will encourage careful consideration of experimental X-ray parameters before conducting diffraction on similar radiation-sensitive organometallic materials
Vulnerability analysis of satellite-based synchronized smart grids monitoring systems
The large-scale deployment of wide-area monitoring systems could play a strategic role in supporting the evolution of traditional power systems toward smarter and self-healing grids. The correct operation of these synchronized monitoring systems requires a common and accurate timing reference usually provided by a satellite-based global positioning system. Although these satellites signals provide timing accuracy that easily exceeds the needs of the power industry, they are extremely vulnerable to radio frequency interference. Consequently, a comprehensive analysis aimed at identifying their potential vulnerabilities is of paramount importance for correct and safe wide-area monitoring system operation. Armed with such a vision, this article presents and discusses the results of an experimental analysis aimed at characterizing the vulnerability of global positioning system based wide-area monitoring systems to external interferences. The article outlines the potential strategies that could be adopted to protect global positioning system receivers from external cyber-attacks and proposes decentralized defense strategies based on self-organizing sensor networks aimed at assuring correct time synchronization in the presence of external attacks
Protein dynamics with off-lattice Monte Carlo moves
A Monte Carlo method for dynamics simulation of all-atom protein models is
introduced, to reach long times not accessible to conventional molecular
dynamics. The considered degrees of freedom are the dihedrals at
C-atoms. Two Monte Carlo moves are used: single rotations about
torsion axes, and cooperative rotations in windows of amide planes, changing
the conformation globally and locally, respectively. For local moves Jacobians
are used to obtain an unbiased distribution of dihedrals. A molecular dynamics
energy function adapted to the protein model is employed. A polypeptide is
folded into native-like structures by local but not by global moves.Comment: 10 pages, 4 Postscript figures, uses epsf.sty and a4.sty; scheduled
tentatively for Phys.Rev.E issue of 1 March 199
Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders
The prenatal and early postnatal stages represent a critical time window for human brain development. Interestingly, this window partly overlaps with the maturation of the intestinal flora (microbiota) that play a critical role in the bidirectional communication between the central and the enteric nervous systems (microbiota-gut-brain axis). The microbial composition has important influences on general health and the development of several organ systems, such as the gastrointestinal tract, the immune system, and also the brain. Clinical studies have shown that microbiota alterations are associated with a wide range of neuropsychiatric disorders including autism spectrum disorder, attention deficit hyperactivity disorder, schizophrenia, and bipolar disorder. In this review, we dissect the link between these neuropsychiatric disorders and the intestinal microbiota by focusing on their effect on synaptic pruning, a vital process in the maturation and establishing efficient functioning of the brain. We discuss in detail how synaptic pruning is dysregulated differently in the aforementioned neuropsychiatric disorders and how it can be influenced by dysbiosis and/or changes in the intestinal microbiota composition. We also review that the improvement in the intestinal microbiota composition by a change in diet, probiotics, prebiotics, or fecal microbiota transplantation may play a role in improving neuropsychiatric functioning, which can be at least partly explained via the optimization of synaptic pruning and neuronal connections. Altogether, the demonstration of the microbiota's influence on brain function via microglial-induced synaptic pruning addresses the possibility that the manipulation of microbiota-immune crosstalk represents a promising strategy for treating neuropsychiatric disorders
Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease
Behavioural variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct). Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD
Bay Breeze Influence on Surface Ozone at Edgewood, MD During July 2011
Surface ozone (O3) was analyzed to investigate the role of the bay breeze on air quality at two locations in Edgewood, Maryland (lat: 39.4deg, lon: 76.3deg) for the month of July 2011. Measurements were taken as part of the first year of NASA's "Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality" (DISCOVER-AQ) Earth Venture campaign and as part of NASA's Geostationary for Coastal and Air Pollution Events Chesapeake Bay Oceanographic campaign with DISCOVER-AQ (Geo-CAPE CBODAQ). Geo-CAPE CBODAQ complements DISCOVER-AQ by providing ship-based observations over the Chesapeake Bay. A major goal of DISCOVER-AQ is determining the relative roles of sources, photochemistry and local meteorology during air quality events in the Mid-Atlantic region of the U.S. Surface characteristics, transport and vertical structures of O3 during bay breezes were identified using in-situ surface, balloon and aircraft data, along with remote sensing equipment. Localized late day peaks in O3 were observed during bay breeze days, maximizing an average of 3 h later compared to days without bay breezes. Of the 10 days of July 2011 that violated the U.S. Environmental Protection Agency (EPA) 8 h O3 standard of 75 parts per billion by volume (ppbv) at Edgewood, eight exhibited evidence of a bay breeze circulation. The results indicate that while bay breezes and the processes associated with them are not necessary to cause exceedances in this area, bay breezes exacerbate poor air quality that sustains into the late evening hours at Edgewood. The vertical and horizontal distributions of O3 from the coastal Edgewood area to the bay also show large gradients that are often determined by boundary layer stability. Thus, developing air quality models that can sufficiently resolve these dynamics and associated chemistry, along with more consistent monitoring of O3 and meteorology on and along the complex coastline of Chesapeake Bay must be a high priority
Viewing Nature Scenes Positively Affects Recovery of Autonomic Function Following Acute-Mental Stress
A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor. © 2013 American Chemical Society
- …