53 research outputs found

    Cerebellar Complex Spike Firing Is Suitable to Induce as Well as to Stabilize Motor Learning

    Get PDF
    SummaryBackgroundCerebellar Purkinje cells (PC) generate two responses: the simple spike (SS), with high firing rates (>100 Hz), and the complex spike (CS), characterized by conspicuously low discharge rates (1–2 Hz). Contemporary theories of cerebellar learning suggest that the CS discharge pattern encodes an error signal that drives changes in SS activity, ultimately related to motor behavior. This then predicts that CS will discharge in relation to the error and at random once the error has been nulled by the new behavior.ResultsWe tested this hypothesis with saccadic adaptation in macaque monkeys as a model of cerebellar-dependent motor learning. During saccadic adaptation, error information unconsciously changes the endpoint of a saccade prompted by a visual target that shifts its final position during the saccade. We recorded CS from PC of the posterior vermis before, during, and after saccadic adaptation. In clear contradiction to the “error signal” concept, we found that CS occurred at random before adaptation onset, i.e., when the error was maximal, and built up to a specific saccade-related discharge profile during the course of adaptation. This profile became most pronounced at the end of adaptation, i.e., when the error had been nulled.ConclusionsWe suggest that CS firing may underlie the stabilization of a learned motor behavior, rather than serving as an electrophysiological correlate of an error

    Bounce behaviour in Kantowski-Sachs and Bianchi Cosmologies

    Full text link
    Many cosmological scenarios envisage either a bounce of the universe at early times, or collapse of matter locally to form a black hole which re-expands into a new expanding universe region. Energy conditions preclude this happening for ordinary matter in general relativistic universes, but scalar or dilatonic fields can violate some of these conditions, and so could possibly provide bounce behaviour. In this paper we show that such bounces cannot occur in Kantowski-Sachs models without violating the {\it reality condition} ϕ˙2≄0\dot{\phi}^2\geq 0. This also holds true for other isotropic spatially homogenous Bianchi models, with the exception of closed Friedmann-Robertson-Walker and Bianchi IX models; bounce behaviour violates the {\em weak energy condition} ρ≄0\rho\geq 0 and ρ+p≄0\rho+p\geq 0. We turn to the Randall-Sundrum type braneworld scenario for a possible resolution of this problem.Comment: Matches published versio

    The unexpected resurgence of Weyl geometry in late 20-th century physics

    Full text link
    Weyl's original scale geometry of 1918 ("purely infinitesimal geometry") was withdrawn by its author from physical theorizing in the early 1920s. It had a comeback in the last third of the 20th century in different contexts: scalar tensor theories of gravity, foundations of gravity, foundations of quantum mechanics, elementary particle physics, and cosmology. It seems that Weyl geometry continues to offer an open research potential for the foundations of physics even after the turn to the new millennium.Comment: Completely rewritten conference paper 'Beyond Einstein', Mainz Sep 2008. Preprint ELHC (Epistemology of the LHC) 2017-02, 92 pages, 1 figur

    Olfactory receptors on the maxillary palps of small ermine moth larvae: evolutionary history of benzaldehyde sensitivity

    Get PDF
    In lepidopterous larvae the maxillary palps contain a large portion of the sensory equipment of the insect. Yet, knowledge about the sensitivity of these cells is limited. In this paper a morphological, behavioral, and electrophysiological investigation of the maxillary palps of Yponomeuta cagnagellus (Lepidoptera: Yponomeutidae) is presented. In addition to thermoreceptors, CO2 receptors, and gustatory receptors, evidence is reported for the existence of two groups of receptor cells sensitive to plant volatiles. Cells that are mainly sensitive to (E)-2-hexenal and hexanal or to (Z)-3-hexen-1-ol and 1-hexanol were found. Interestingly, a high sensitivity for benzaldehyde was also found. This compound is not known to be present in Euonymus europaeus, the host plant of the monophagous Yponomeuta cagnagellus, but it is a prominent compound in Rosaceae, the presumed hosts of the ancestors of Y. cagnagellus. To elucidate the evolutionary history of this sensitivity, and its possible role in host shifts, feeding responses of three Yponomeuta species to benzaldehyde were investigated. The results confirm the hypothesis that the sensitivity to benzaldehyde evolved during the ancestral shift from Celastraceae to Rosaceae and can be considered an evolutionary relict, retained in the recently backshifted Celastraceae-specialist Y. cagnagellus

    Reflexive gaze following in common marmoset monkeys

    No full text

    Data from: Monkeys head-gaze following is fast, precise and not fully suppressible.

    No full text
    Human eye-gaze is a powerful stimulus, drawing the observer's attention to places and objects of interest to someone else (‘eye-gaze following’). The largely homogeneous eyes of monkeys, compromising the assessment of eye-gaze by conspecifics from larger distances, explain the absence of comparable eye-gaze following in these animals. Yet, monkeys are able to use peer head orientation to shift attention (‘head-gaze following’). How similar are monkeys' head-gaze and human eye-gaze following? To address this question, we trained rhesus monkeys to make saccades to targets, either identified by the head-gaze of demonstrator monkeys or, alternatively, identified by learned associations between the demonstrators' facial identities and the targets (gaze versus identity following). In a variant of this task that occurred at random, the instruction to follow head-gaze or identity was replaced in the course of a trial by the new rule to detect a change of luminance of one of the saccade targets. Although this change-of-rule rendered the demonstrator portraits irrelevant, they nevertheless influenced performance, reflecting a precise redistribution of spatial attention. The specific features depended on whether the initial rule was head-gaze or identity following: head-gaze caused an insuppressible shift of attention to the target gazed at by the demonstrator, whereas identity matching prompted much later shifts of attention, however, only if the initial rule had been identity following. Furthermore, shifts of attention prompted by head-gaze were spatially precise. Automaticity and swiftness, spatial precision and limited executive control characterizing monkeys' head-gaze following are key features of human eye-gaze following. This similarity supports the notion that both may rely on the same conserved neural circuitry
    • 

    corecore