569 research outputs found
Granger causal time-dependent source connectivity in the somatosensory network
Peer reviewedPublisher PD
Cartilage Repair and Subchondral Bone Migration Using 3D Printing Osteochondral Composites: A One-Year-Period Study in Rabbit Trochlea
Increasing evidences show that subchondral bone may play a significant role in the repair or progression of cartilage damagein situ. However, the exact change of subchondral bone during osteochondral repair is still poorly understood. In this paper, biphasic osteochondral composite scaffolds were fabricated by 3D printing technology using PEG hydrogel andβ-TCP ceramic and then implanted in rabbit trochlea within a critical size defect model. Animals were euthanized at 1, 2, 4, 8, 16, 24, and 52 weeks after implantation. Histological results showed that hyaline-like cartilage formed along with white smooth surface and invisible margin at 24 weeks postoperatively, typical tidemark formation at 52 weeks. The repaired subchondral bone formed from 16 to 52 weeks in a “flow like” manner from surrounding bone to the defect center gradually. Statistical analysis illustrated that both subchondral bone volume and migration area percentage were highly correlated with the gross appearance Wayne score of repaired cartilage. Therefore, subchondral bone migration is related to cartilage repair for critical size osteochondral defects. Furthermore, the subchondral bone remodeling proceeds in a “flow like” manner and repaired cartilage with tidemark implies that the biphasic PEG/β-TCP composites fabricated by 3D printing provides a feasible strategy for osteochondral tissue engineering application.</jats:p
Quantitative assessment of cerebral connectivity deficiency and cognitive impairment in children with prenatal alcohol exposure
We would like to thank the patients, their parents, and technicians for their participation in this study. This research was supported by the National Natural Science Foundation (Grant No. 61601361), the Natural Science Foundation of Shaanxi Province in China (Grant No. 2017JM6013), the Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing (Contract No. SKL2017CP07), the Xi’an University of Technology, and the National Institutes of Health (NIH) grants (J. Stephen and T. Zhang—Grant Nos. P20AA017068, NCRR P20RR021938, NIGMS P20GM103472, and 1P50AA022534).Peer reviewedPostprintPostprintPublisher PD
The Promotion of Mechanical Properties by Bone Ingrowth in Additive-Manufactured Titanium Scaffolds
Although the initial mechanical properties of additive-manufactured (AM) metal scaffolds have been thoroughly studied and have become a cornerstone in the design of porous orthopaedic implants, the potential promotion of the mechanical properties of the scaffolds by bone ingrowth has barely been studied. In this study, the promotion of bone ingrowth on the mechanical properties of AM titanium alloy scaffolds was investigated through in vivo experiments and numerical simulation. On one hand, the osseointegration characteristics of scaffolds with architectures of body-centred cubic (BCC) and diamond were compared through animal experiments in which the mechanical properties of both scaffolds were not enhanced by the four-week implantation. On the other hand, the influences of the type and morphology of bone tissue in the BCC scaffolds on its mechanical properties were investigated by the finite element model of osseointegrated scaffolds, which was calibrated by the results of biomechanical testing. Significant promotion of the mechanical properties of AM metal scaffolds was only found when cortical bone filled the pores in the scaffolds. This paper provides a numerical prediction method to investigate the effect of bone ingrowth on the mechanical properties of AM porous implants, which might be valuable for the design of porous implants
Functional biomimetic design of 3D printed polyether-ether-ketone flexible chest wall reconstruction implants for restoration of the respiration
The lack of deformability of rigid chest wall reconstruction (CWR) implants presents a challenge in reducing postoperative respiratory function in patients with large chest wall defects. Flexible poly-ether-ether-ketone (PEEK) CWR implants, consisting of rib components with elliptical cross-section and costal cartilage components featuring wavy structures, were developed with adjustable design parameters that allow quantitative restoration of respiratory function. During the design process, the equivalent elastic moduli of the rib and costal cartilage components were parametrically adjusted in a validated finite element (FE) model of the chest wall to maximise chest wall deformation during respiration, while considering mechanical safety as the boundary condition. The optimal equivalent elastic moduli were then translated into design parameters for the rib and costal cartilage components, based on a database relating the equivalent elastic modulus to the design parameters of the components with elliptical cross-section and wavy structures. The flexible PEEK CWR implant increased the difference in chest circumference during respiration by 12.2% compared to rigid PEEK implant in a clinical case-based study. This study presents a strategy to address the reduced respiratory function in 3D printed CWR implants, providing a pathway for quantitative restoration of respiratory function through parameterised optimisation
Fused Deposition Modeling PEEK Implants for Personalized Surgical Application: From Clinical Need to Biofabrication
Three-dimensional printing (3DP) technology is suitable for manufacturing personalized orthopedic implants for reconstruction surgery. Compared with traditional titanium, polyether-ether-ketone (PEEK) is the ideal material for 3DP orthopedic implants due to its various advantages, including thermoplasticity, thermal stability, high chemical stability, and radiolucency suitable elastic modulus. However, it is challenging to develop a well-designed method and manufacturing technique to meet the clinical needs because it requires elaborate details and interplays with clinical work. Furthermore, establishing surgical standards for new implants requires many clinical cases and an accumulation of surgical experience. Thus, there are few case reports on using 3DP PEEK implants in clinical practice. Herein, we formed a team with a lot of engineers, scientists, and doctors and conducted a series of studies on the 3DP PEEK implants for chest wall reconstruction. First, the thoracic surgeons sort out the specific types of chest wall defects. Then, the engineers designed the shape of the implant and performed finite element analysis for every implant. To meet the clinical needs and mechanical requirements of implants, we developed a new fused deposition modeling technology to make personalized PEEK implants. Overall, the thoracic surgeons have used 114 personalized 3DP PEEK implants to reconstruct the chest wall defect and further established the surgical standards of the implants as part of the Chinese clinical guidelines. The surface modification technique and composite process are developed to overcome the new clinical problems of implant-related complications after surgery. Finally, the major challenges and possible solutions to translating 3DP PEEK implants into a mature and prevalent clinical product are discussed in the paper
Biomimetic design and integrated biofabrication of an in-vitro three-dimensional multi-scale multilayer cortical model
The lack of accurate and reliable in vitro brain models hinders the development of brain science and research on brain diseases. Owing to the complex structure of the brain tissue and its highly nonlinear characteristics, the construction of brain-like in vitro tissue models remains one of the most challenging research fields in the construction of living tissues. This study proposes a multi-scale design of a brain-like model with a biomimetic cortical structure, which includes the macroscopic structural features of six layers of different cellular components, as well as micrometer-scale continuous fiber structures running through all layers vertically. To achieve integrated biomanufacturing of such a complex multi-scale brain-like model, a multi-material composite printing/culturing integrated bioprinting platform was developed in-house by integrating cell-laden hydrogel ink direct writing printing and electrohydrodynamic fiber 3D printing technologies. Through integrated bioprinting, multi-scale models with different cellular components and fiber structural parameters were prepared to study the effects of macroscopic and microscopic structural features on the directionality of neural cells, as well as the interaction between glial cells and neurons within the tissue model in a three-dimensional manner. The results revealed that the manufactured in vitro biomimetic cortical model achieved morphological connections between the layers of neurons, reflecting the structure and cellular morphology of the natural cortex. Micrometer-scale (10 μm) cross-layer fibers effectively guided and controlled the extension length and direction of the neurites of surrounding neural cells but had no significant effect on the migration of neurons. In contrast, glial cells significantly promoted the migration of surrounding PC12 cells towards the glial layer but did not contribute to the extension of neurites. This study provides a basis for the design and manufacture of accurate brain-like models for the functionalization of neuronal tissues
Stress Shielding and Bone Resorption of Press-Fit Polyether–Ether–Ketone (PEEK) Hip Prosthesis: A Sawbone Model Study
Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of the hip prostheses and increases the rates of revision surgery. This study proposes a low stiffness polyether–ether–ketone (PEEK) hip prostheses, produced by fused deposition modelling to minimize the stress difference after the hip replacement. The stress shielding effect and the potential bone resorption of the PEEK implant was investigated through both experimental tests and FE simulation. A generic Ti6Al4V implant was incorporated in this study to allow fair comparison as control group. Attributed to the low stiffness, the proposed PEEK implant showed a more natural stress distribution, less stress shielding (by 104%), and loss in bone mass (by 72%) compared with the Ti6Al4V implant. The stiffness of the Ti6Al4V and the PEEK implant were measured through compression tests to be 2.76 kN/mm and 0.276 kN/mm. The factor of safety for the PEEK implant in both static and dynamic loading scenarios were obtained through simulation. Most of the regions in the PEEK implant were tested to be safe (FoS larger than 1) in terms of representing daily activities (2300 N), while the medial neck and distal restriction point of the implant attracts large von Mises stress 82 MPa and 76 MPa, respectively, and, thus, may possibly fail during intensive activities by yield and fatigue. Overall, considering the reduction in stress shielding and bone resorption in cortical bone, PEEK could be a promising material for the patient–specific femoral implants
- …
