24 research outputs found

    Tidal Flushing Restores the Physiological Condition of Fish Residing in Degraded Salt Marshes

    Get PDF
    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration

    Ecology of Phragmites australis and responses to tidal restoration

    Get PDF
    Tidal Marsh Restoration provides the scientific foundation and practical guidance necessary for coastal zone stewards to initiate salt marsh tidal restoration programs. The book compiles, synthesizes, and interprets the current state of knowledge on the science and practice of salt marsh restoration, bringing together leaders across a range of disciplines in the sciences (hydrology, soils, vegetation, zoology), engineering (hydraulics, modeling), and public policy, with coastal managers who offer an abundance of practical insight and guidance on the development of programs. The book is an essential work for managers, planners, regulators, environmental and engineering consultants, and others engaged in planning, designing, and implementing projects or programs aimed at restoring tidal flow to tide-restricted or diked salt marshes.https://scholarworks.wm.edu/asbookchapters/1065/thumbnail.jp

    Detection of decreased quantities of actively spawning female Fundulus heteroclitus in tidally restricted marshes relative to restored and reference sites

    No full text
    Hydrologic restriction of salt marshes and subsequent invasion by Phragmites australis could influence the reproductive success of Fundulus heteroclitus, a common salt marsh resident that forages and spawns on the marsh surface at flood tide. Previous research in our laboratory using data from 2010 to 2011 examined the proportion of actively spawning F. heteroclitus residing in altered New England salt marshes as part of a larger experiment to examine the physiological condition of fish in restricted and restored marshes relative to paired unrestricted (reference) sites. We detected a significant decrease in the proportion of actively spawning fish in restricted relative to paired unrestricted marshes, but no difference between restored and paired unrestricted marsh fish. In this manuscript, we conduct a re-analysis of a portion of that data (July 2011) to explore potential mechanisms behind previous results. Using forward stepwise selection and generalized linear mixed models, we determined that the reduction in actively spawning restricted marsh fish was due to a single predictor (lipid mass); there were no effects of water temperature, body size, parasite prevalence, parasite density, and growth rate on the response. Previous results indicate healthy restricted marsh fish already have reduced energy reserves. Since investment in oocytes is energetically costly (this analysis), the effect could manifest at the population level as a reduction in actively spawning fish. In addition, oocyte quality is reduced in restricted marshes (as measured by % lipid; 13.9 Β± 1.6 % SD) relative to paired unrestricted marshes (15.9 Β± 2.3 % SD). Although these data are preliminary and represent a single lunar cycle, additional studies are warranted to explore relationships between P. australis invasion, restoration, and effects on the fecundity of this ubiquitous salt marsh fish

    The Effects of Plant Invasion and Ecosystem Restoration on Energy Flow through Salt Marsh Food Webs

    No full text
    We measured the effects of a plant invasion (Phragmites australis) on resident fish (Fundulus heteroclitus) in New England salt marshes by assessing diet quality at the food web base and by quantifying the importance of primary producers to secondary production using a recently developed Bayesian mixing model (Stable Isotope Analysis in R, SIAR ). Spartina alterniflora, the dominant native plant, exhibited significantly greater leaf toughness and higher C/N ratios relative to P. australis. Benthic microalgae and phytoplankton (as suspended particulate matter) exhibited the lowest C/N indicating higher diet quality. We conducted a sensitivity analysis in SIAR by modeling F. heteroclitus at three separate trophic levels (1.5, 2.0, and 2.5) using species-specific discrimination factors to determine basal resource contributions. Overall, the best-fitting models include those that assume F. heteroclitus resides approximately 2.0 trophic levels above primary producers. Using discrimination factors from a range of data sources reported in the literature, our analyses revealed that consumers rely less on benthic microalgae and phytoplankton in restricted marshes (7-23 % and 11-44 %, respectively) relative to reference marshes (5-34 % and 23-48 %, respectively), resulting in a shift in diet toward invasive plant consumption (0-27 %). This is likely due to increased P. australis cover and marsh surface shading leading to decreased microalgal biomass, combined with reduced flooding of the marsh surface that favors terrestrial invertebrate assemblages. Restoration decreased the quantity of P. australis in the food web (0-15 %) and increased the importance of microalgae (1-30 %), phytoplankton (19-48 %), and native plants (23-63 %), indicating a shift in ecological recovery toward reference conditions. Β© 2013 Coastal and Estuarine Research Federation

    Fish length vs. wet weight for healthy fish.

    No full text
    <p>Data pooled across seasons, regions, and by gender. (A) Restored vs. reference fish. (B) Restricted vs. reference fish.</p

    Mean proximate body composition of fish in study, 2010–2011 (standard deviations in parentheses; data by marsh type are pooled across regions, seasons, and sex; data by region, season, and sex are pooled across marsh types; reference marshes adjacent to the restored and restricted marshes are noted in parentheses).

    No full text
    <p>Mean proximate body composition of fish in study, 2010–2011 (standard deviations in parentheses; data by marsh type are pooled across regions, seasons, and sex; data by region, season, and sex are pooled across marsh types; reference marshes adjacent to the restored and restricted marshes are noted in parentheses).</p

    Results of repeated measures ANOVA for the restricted vs. reference systems [Model terms: Marsh type (termed β€œMarsh”: comparison of restricted vs. reference); Time (comparison of the two marsh types within summer 2010, fall 2010, summer 2011, fall 2011); Region (comparison of the two marsh types within the Gulf of Maine vs. Long Island Sound)].

    No full text
    <p>Results of repeated measures ANOVA for the restricted vs. reference systems [Model terms: Marsh type (termed β€œMarsh”: comparison of restricted vs. reference); Time (comparison of the two marsh types within summer 2010, fall 2010, summer 2011, fall 2011); Region (comparison of the two marsh types within the Gulf of Maine vs. Long Island Sound)].</p

    Proportion of fish parasitized (circles; females and males) or gravid (triangles; females only) by marsh type.

    No full text
    <p>Data is presented as the mean proportion Β± standard deviation.</p

    Mean water quality 2010–2011, by marsh type (standard deviations in parentheses; data pooled across regions and seasons).

    No full text
    <p>Mean water quality 2010–2011, by marsh type (standard deviations in parentheses; data pooled across regions and seasons).</p

    Impacts of plant invasions can be reversed through restoration: A regional meta-analysis of faunal communities

    No full text
    We quantified the effects of invasive Phragmites australis on estuarine faunal communities using meta-analysis to compare invaded to uninvaded marshes and then evaluated whether ecological restoration could reverse those effects. Relative to uninvaded marshes, the quantity and condition of fauna in invaded marshes was significantly poorer. We detected negative impacts to fauna residing in the mid-Atlantic but not in New England and to fauna utilizing the marsh surface but not to those inhabiting tidal creeks. By taxonomic group, we found that the invasion negatively affected nekton but not invertebrates. Both adult and sub-adult nekton were adversely affected, although the magnitude of the effect on the sub-adults was four times greater than that for adults. Our results indicate that negative effects on fauna within the mid-Atlantic region largely drove the overall results. When restored marshes were compared to uninvaded marshes there were no significant differences across all metrics assessed, suggesting that the negative impacts of the invasion were reversed. A separate qualitative review of trophic data indicated that benthic microalgae and dominant vascular plants are important primary producers at the base of the food web in uninvaded, invaded, and restored salt marshes but the overall quantity and importance of microalgae to diet decreased in highly invaded systems due to decreased light, potentially reducing energy availability. Our analyses revealed that while estuarine communities are adversely affected by P. australis, impacts vary by region, habitat, taxonomic group, and life history stage and that restoration can reverse long-term effects over relatively short time scales. Β© 2013 Springer Science+Business Media Dordrecht
    corecore