18 research outputs found

    The Drifting Phase of SARAL: Securing Stable Ocean Mesoscale Sampling with an Unmaintained Decaying Altitude

    No full text
    The French/Indian altimeter project Satellite with ARGOS and AltiKa (SARAL) completed its nominal 3-year mission on the historical European Remote-sensing Satellite (ERS) orbit in Spring 2016. In order to extend the lifetime of the satellite as much as possible, the agencies in charge of SARAL decided to initiate a so-called drifting phase where the satellite altitude is no longer maintained. In this paper we describe how the ocean mesoscale sampling capability of SARAL has been preserved during the drifting phase by initiating it at a specific altitude: the optimal starting point was approximately 1 km above the historical ERS/ENVIronment SATellite (ENVISAT) orbit. This strategy secured the ocean mesoscale sampling capability of SARAL drifting phase (DP) for 6 years or more. We also generalize these findings: any altimeter could follow SARAL’s drifting phase strategy if their maneuvering capability is limited. Lastly, we explain how an altimetry mission or an entire altimeter constellation could be operated without any form of altitude control: some specific altitude bands (e.g., near 1230 km) guarantee a high-quality mesoscale sampling for years or decades even if the altitude is not maintained

    Characterizing Rain Cells as Measured by a Ka-Band Nadir Radar Altimeter: First Results and Impact on Future Altimetry Missions

    No full text
    The impact of large atmospheric attenuation events on data quality and availability is a critical aspect for future altimetry missions based on Ka-band altimetry. The SARAL/AltiKa mission and its Ka-band nadir altimeter offer a unique opportunity to assess this impact. Previous publications (Tournadre et al., 2009, 2015) already analyzed the impact of rain on the waveforms at Ka-band and proposed a definition of an elaborate rain flag. This notion tends to give a simpler black and white view of the atmospheric attenuation when the effect on the altimeter measurement is intense. However, in practice, there is a continuum of measurements that may be partially distorted or corrupted by rain events. The present study proposes a wider point of view, directly using the timeseries of the Ka-band altimeter backscattering coefficient for the first time, when previous studies relied on microwave radiometer (MWR) observations or model analyses with coarser resolutions. As guidelines for future Ka-band missions concerning the impact of the atmosphere, the Attenuation CElls Characterization ALgorithm (ACECAL) approach not only provides more representative statistics on rain cells (occurrences, amplitude, size), but also describes the internal structure of the cells. The actual atmospheric attenuation retrieved with ACECAL is about four times larger than the attenuation retrieved from the MWR. At a global scale, 1% of the measurements are affected by an attenuation larger than 23 dB and 10% of the atmospheric attenuation events have a size larger than 40 km. At regional scale, some areas of particular interest for oceanography as Gulf Stream, North Pacific and Brazil currents are more systematically affected compared with global statistics, with atmospheric attenuation up to 8 dB and cell size larger than 25 km when rain occurs. This study also opens some perspectives on the benefits that the community could be drawn from the systematic distribution of the rain cells parameters as secondary products of altimetry missions

    The Drifting Phase of SARAL: Securing Stable Ocean Mesoscale Sampling with an Unmaintained Decaying Altitude

    No full text
    The French/Indian altimeter project Satellite with ARGOS and AltiKa (SARAL) completed its nominal 3-year mission on the historical European Remote-sensing Satellite (ERS) orbit in Spring 2016. In order to extend the lifetime of the satellite as much as possible, the agencies in charge of SARAL decided to initiate a so-called drifting phase where the satellite altitude is no longer maintained. In this paper we describe how the ocean mesoscale sampling capability of SARAL has been preserved during the drifting phase by initiating it at a specific altitude: the optimal starting point was approximately 1 km above the historical ERS/ENVIronment SATellite (ENVISAT) orbit. This strategy secured the ocean mesoscale sampling capability of SARAL drifting phase (DP) for 6 years or more. We also generalize these findings: any altimeter could follow SARAL’s drifting phase strategy if their maneuvering capability is limited. Lastly, we explain how an altimetry mission or an entire altimeter constellation could be operated without any form of altitude control: some specific altitude bands (e.g., near 1230 km) guarantee a high-quality mesoscale sampling for years or decades even if the altitude is not maintained

    Revised Global Wave Number Spectra From Recent Altimeter Observations

    No full text
    International audienceGlobal sea surface height wave number spectra are revisited using the most recent, lower-noise satellite altimeter missions from Saral/AltiKa and Sentinel-3 and compared to Jason-2 wave number spectra. Spectral preprocessing is configured to minimize the spectral slope distortion in the mesoscale wavelength range. A geographically variable wavelength range is used to calculate the spectral slopes, taking into account the regional eddy length scales based on the local Rossby radius. This dynamical wavelength range increases the spectral slope by 0.5 in middle to high latitudes, compared to a fixed wavelength range, and by -1.0 to 1.0 in different regions of the intertropical band. Using this dynamical wavelength range, mean sea surface height wave number spectra for these lower-noise missions exhibit low slope values (k-2) in the intertropical band, values of k-11/3 in the midlatitudes, and reaches k-5 in the subpolar regions and the Antarctic circumpolar current. An important seasonality is also revealed, with mesoscale spectral slope amplitudes decreasing in winter by 0.5 to 1.5 compared to summer, for the middle- to high-energy regions. A phase-locked internal tide correction is tested but has only a small impact on the spectral slope estimates when using the dynamical wavelength range

    KaRIn Noise Reduction Using a Convolutional Neural Network for the SWOT Ocean Products

    No full text
    The SWOT (Surface Water Ocean Topography) mission will provide high-resolution and two-dimensional measurements of sea surface height (SSH). However, despite its unprecedented precision, SWOT’s Ka-band Radar Interferometer (KaRIn) still exhibits a substantial amount of random noise. In turn, the random noise limits the ability of SWOT to capture the smallest scales of the ocean’s topography and its derivatives. In that context, this paper explores the feasibility, strengths and limits of a noise-reduction algorithm based on a convolutional neural network. The model is based on a U-Net architecture and is trained and tested with simulated data from the North Atlantic. Our results are compared to classical smoothing methods: a median filter, a Lanczos kernel smoother and the SWOT de-noising algorithm developed by Gomez-Navarro et al. Our U-Net model yields better results for all the evaluation metrics: 2 mm root mean square error, sub-millimetric bias, variance reduction by factor of 44 (16 dB) and an accurate power spectral density down to 10–20 km wavelengths. We also tested various scenarios to infer the robustness and the stability of the U-Net. The U-Net always exhibits good performance and can be further improved with retraining if necessary. This robustness in simulation is very encouraging: our findings show that the U-Net architecture is likely one of the best candidates to reduce the noise of flight data from KaRIn

    META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry

    No full text
    International audienceThis paper presents the new global Mesoscale Eddy Trajectory Atlases (META3.1exp DT all-satellites, https://doi.org/10.24400/527896/a01-2021.001, Pegliasco et al., 2021a; and META3.1exp DT two-satellites, https://doi.org/10.24400/527896/a01-2021.002, Pegliasco et al., 2021b), composed of eddy identifications and trajectories produced with altimetric maps. The detection method used is inherited from the py-eddy-tracker (PET) algorithm developed by Mason et al. (2014), and is optimized to efficiently manage large datasets, and thus long time series. These products are an improvement on the earlier META2.0 product, which was produced by SSALTO/DUACS and distributed by AVISO+ (https://aviso.altimetry.fr, last access: 8 March 2022) with support from CNES, in collaboration with Oregon State University and support from NASA, and based on the Chelton et al. (2011) code. META3.1exp provides supplementary eddy information, such as eddy shapes, eddy edges, maximum speed contours, and mean eddy speed profiles from the center to the periphery. The tracking algorithm is based on overlapping contours, includes virtual observations, and acts as a filter with respect to the shortest trajectories. The absolute dynamic topography (ADT) field is now used for eddy detection, instead of the previous sea level anomaly (SLA) maps, in order to better represent the dynamics in the more energetic oceanic regions and in the vicinity of coasts and islands. To evaluate the impact of the changes from META2.0 to META3.1exp, a comparison methodology has been applied. The similarity coefficient (SC) is based on the ratio of the eddy overlaps to their cumulative area, and allows for extensive comparison of the different datasets in terms of geographic distribution, statistics on the main physical characteristics, changes in the lifetimes of the trajectories, etc. After evaluating the impact of each change separately, we conclude that the major differences between META3.1exp and META2.0 are due to the change in the detection algorithm. META3.1exp contains smaller eddies and trajectories lasting at least 10 d; these were not available in the META2.0 product. Nevertheless, 55 % of the structures in META2.0 are similar to META3.1exp, thereby ensuring continuity between the two products and their physical characteristics. Geographically, the eddy distributions differ mainly in the strong current regions, where the mean dynamic topography (MDT) gradients are sharp. The additional information on the eddy contours allows for more accurate collocation of mesoscale structures with data from other sources, and so META3.1exp is recommended for multi-disciplinary application

    Streamlining Data and Service Centers for Easier Access to Data and Analytical Services: The Strategy of ODATIS as the Gateway to French Marine Data

    No full text
    International audienceThe past few decades have seen a marked acceleration in the amount of marine observation data derived using both in situ and remote sensing measurements. For example, high-frequency monitoring of key physical-chemical parameters has become an essential tool for assessing natural and human-induced changes in coastal waters as well as their consequences on society. The number and variety of data acquisition techniques require efficient methods of improving data availability. The challenge is to make ocean data available via interoperable portals, which facilitate data sharing according to Findable, Accessible, Interoperable, and Reusable (FAIR) principles for producers and users. Ocean DAta Information and Services (ODATIS) aims to become a unique gateway to all French marine data, regardless of the discipline (e.g., physics, chemistry, biogeochemistry, biology, sedimentology). ODATIS is the ocean cluster of the Data Terra research infrastructure for Earth data, which relies on a network of data and service centers (DSC) supported by the major French oceanic research organizations (CNRS, CNES, Ifremer, IRD, SHOM; Marine Universities). ODATIS, through its components, is involved in European and international initiatives such as Copernicus, SeaDataCloud, and EMODnet. The first challenge of ODATIS is to catalog all open ocean and coastal data and facilitate data collection and access (discovery, visualization, extraction) through its web portal. A specific task is to develop tools for handling large amounts of data and generate products for policymakers, practitioners, and academics. This study presents the strategy used by ODATIS to implement the FAIR and CoreTrustSeal requirements in each of its DSCs and promote adherence within the scientific community (the main data producer) regarding the upload and/or usenof data and suggestion of new products. A second challenge is to cover the enduser needs ranging from proximity to the producer to cross-analysis of data from all Earth compartments. This involves defining and organizing a classification of DSCs in the network, which will be developed within the framework of the French Data Terra research infrastructure, the only framework capable of providing the necessary IT and human resources

    Reconstructing Ocean Surface Current Combining Altimetry and Future Spaceborne Doppler Data

    No full text
    Two methods for the mapping of ocean surface currents from satellite measurements of sea level and future current vectors are presented and contrasted. Both methods rely on the linear and Gaussian analysis framework with different levels of covariance definitions. The first method separately maps sea level and currents with single‐scale covariance functions and leads to estimates of the geostrophic and ageostrophic circulations. The second maps both measurements simultaneously and projects the circulation onto 4 contributions: geostrophic, ageostrophic rotary, ageostrophic divergent and inertial. When compared to the first method, the second mapping moderately improves the resolution of geostrophic currents but significantly improves estimates of the ageostrophic circulation, in particular near‐inertial oscillations. This method offers promising perspectives for reconstructions of the ocean surface circulation. Even the hourly dynamics can be reconstructed from measurements made locally every few days because nearby measurements are coherent enough to help fill the gaps. Based on numerical simulation of ocean surface currents, the proposed SKIM mission that combines a nadir altimeter and a Doppler scatterometer with a 300 km wide swath (with a mean revisit time of 3 days) would allow the reconstruction of 50% of the near‐inertial variance around an 18 hour period of oscillation. Plain Language Summary Ocean surface currents are caused by a variety of phenomena that varies at different space and time scales. Here we mainly consider the two dominant contributions. The first is the current resulting from the quasi‐equilibrium between the sloping sea level and the Coriolis force, slowly evolving over a few days. The second is also associated with the Coriolis force, but out of equilibrium: oscillating currents caused by rapid changes of the wind with a narrow range of periods around a natural period of oscillation that increase with latitude from 12 hours at the poles. For many applications it is desirable to separate these two contributions, for example to compute transports associated to the slowly evolving component and to evaluate the amount of kinetic energy pumped by the wind, mostly in the fast oscillations. This separation is easy with hourly sampled in situ measurements, but few are available. Here we show that we can perform this separation using satellite passes with measurements of sea level and a swath of surface current vectors, as can be measured by proposed future satellites. The fast oscillations can be reproduced even if data is available every few days, thanks to their spatial patterns and temporal coherence

    Simultaneous estimation of ocean mesoscale and coherent internal tide sea surface height signatures from the global altimetry record

    No full text
    International audienceThis study proposes an approach to estimate the ocean sea surface height signature of coherent internal tides from a 25-year along-track altimetry record, with a single inversion over time, resolving both internal tide contributions and mesoscale eddy variability. The inversion is performed on a reduced-order basis of topography and practically achieved with a conjugate gradient. The particularity of this approach is to mitigate the potential aliasing effects between mesoscales and internal tide estimation from the uneven altimetry sampling (observing the sum of these components) by accounting for their statistics simultaneously, while other methods generally use a prior mesoscale. The four major tidal components are considered (M2, K1, S2, O1) over the period 1992-2017 on a global configuration. From the solution, we use altimetry data after 2017 for independent validation in order to evaluate the performance of the simultaneous inversion and compare it with an existing model

    Data-Driven Calibration Algorithm and Pre-Launch Performance Simulations for the SWOT Mission

    No full text
    The Surface Water and Ocean Topography (SWOT) mission will be affected by various sources of systematic errors, which are correlated in space and in time. Their amplitude before calibration might be as large as tens of centimeters, i.e., able to dominate the mission error budget. To reduce their magnitude, we developed so-called data-driven (or empirical) calibration algorithms. This paper provided a summary of the overall problem, and then presented the calibration framework used for SWOT, as well as the pre-launch performance simulations. We presented two complete algorithm sequences that use ocean measurements to calibrate KaRIN globally. The simple and robust Level-2 algorithm was implemented in the ground segment to control the main source of error of SWOT’s hydrology products. In contrast, the more sophisticated Level-3 (multi-mission) algorithm was developed to improve the accuracy of ocean products, as well as the one-day orbit of the SWOT mission. The Level-2 algorithm yielded a mean inland error of 3–6 cm, i.e., a margin of 25–80% (of the signal variance) with respect to the error budget requirements. The Level-3 algorithm yielded ocean residuals of 1 cm, i.e., a variance reduction of 60–80% with respect to the Level-2 algorithm
    corecore