21 research outputs found

    Comparison of microcrystalline and ultrananocrystalline boron doped diamond anodes: Influence on perfluorooctanoic acid electrolysis

    Get PDF
    This work aims to study the effect of the distinctive chemical and structural surface features of boron doped diamond (BDD) anodes on their electrochemical performance for perfluorooctanoic acid (PFOA) degradation. Commercial BDD anodes were compared: (i) a microcrystalline (MCD) coating on silicon; and (ii) an ultrananocrystalline (UNCD) coating on niobium. MCD gave rise to the complete PFOA (0.24 mmol L−1) degradation in 4 h, at any applied current density in the range 1–5 mA cm−2. On the contrary, only 21% PFOA removal was achieved when using UNCD at 5 mA cm−2 under comparable experimental conditions. Similarly, the total organic carbon (TOC) was reduced by 89% using MCD, whereas only 13% TOC decrease was obtained by UNCD. In order to explain the dissimilar electrochemical activities, the morphological and chemical characterization of the electrode materials was developed by means of FESEM microscopy, XPS and Raman spectroscopy. The UNCD anode surface showed characteristic ultrananocrystalline grain size (2–25 nm), higher boron doping and greater content of H-terminated carbon, whereas the MCD anode was less conductive but contained higher sp3 carbon on the anode surface. Overall, the MCD electrode features allowed more efficient PFOA electrolysis than the UNCD anode. As a result of their distinctive performance, the energy needed for the maximum PFOA degradation (after 4 h) using MCD anode was only 1.4 kWh m−3, while the estimated energy consumption for the UNCD anode would be 37-fold higher. It is concluded that the use of the MCD anode involves considerable energy costs savings.Financial support from the projects CTM2013-44081-R, CTM2016-75509-R and to the Spanish Excellence Network E3TECH (CTQ2015-71650-RDT) (MINECO, SPAIN-FEDER 2014–2020) is gratefully acknowledged. B. Gomez also thanks the FPI research scholarship (BES-2014-071045). Dr. J. Carrillo-Abad is gratefully acknowledged for performing the cyclic voltammograms included in supplementary data

    Hydrolytic degradation and mechanical stability of poly(Ɛ-caprolactone)/reduced graphene oxide membranes as scaffolds for in vitro neural tissue regeneration

    Get PDF
    The present work studies the functional behavior of novel poly(Ɛ-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 º C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.Financial support of the Cantabria Explora call through project JP03.640.69 is gratefully acknowledged. The support of project CTM2016-75509-R (MINECO and FEDER-Spain) is granted. We also thank Marta Romay at University of Cantabria who performed part of the experiments

    Zinc and iron removal from chromium(III) passivation baths by solvent extraction with Cyanex 272

    Get PDF
    The use of Cyanex 272 for extraction of zinc and iron from industrial wastes like chromium(III) passivation baths is investigated. The extraction of the metals is studied, in batch conditions, as a function of equilibration time, temperature, diluent of the organic solution, metals and extractant concentrations and pH values of the aqueous solutions. Also the stripping of the metals from loaded organic phases had been investigated using sulphuric acid solutions as strippant

    Efficient electrochemical degradation of poly- and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant

    Get PDF
    This paper reports the electrochemical treatment of poly- and perfluoroalkyl substances (PFASs) in the effluent from an industrial wastewater treatment plant (WWTP). While most of the previous research focused on the electrochemical degradation of perfluorooctanoic acid and perfluorooctane sulfonate in model solutions, this work studies the simultaneous removal of 8 PFASs at environmentally relevant concentrations in real industrial emissions, which also contained organic matter and inorganic anions. The overall PFASs content in the WWTP effluent was 1652 µg/L, which emphasized the need to develop innovative technologies for the management of PFASs emissions. 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA) were the major contributors (92% w/w) to the overall PFASs content, that also contained significant amounts of short-chain perfluorocarboxylic acids (PFCAs). Using a boron doped diamond (BDD) anode of 0.0070 m2, the effluent (2 L) was treated by applying a current density of 50 mA/cm2 for 10 h, that resulted in 99.7% PFASs removal. The operation at lower current densities (5 and 10 mA/cm2) evidenced the initial degradation of 6:2 fluorotelomers into perfluoroheptanoic and perfluorohexanoic acids, that were later degraded into shorter chain PFCAs. The high TOC removal, >90%, and the fluoride release revealed that PFASs mineralization was effective. These results highlight the potential of the electrochemical technology for the treatment of PFASs contained in industrial wastewaters, which nowadays stands as the main source of this group of persistent pollutants into the environment.Financial support of project CTM2013-44081-R (MINECO, SPAIN-FEDER 2014–2020) is acknowledged. B. Gomez also thanks the FPI grant (BES-2014-071045)

    Facile fabrication of poly(e-caprolactone)/graphene oxide membranes for bioreactors in tissue engineering

    Get PDF
    Promising polymer membranes of blended biocompatible poly(ε-caprolactone) and graphene oxide (PCL/GO) and PCL and partially reduced graphene oxide (PCL/rGO) with outstanding water and nutrient transport properties for cell culture bioreactors were prepared using phase inversion at mild temperatures. Some of the prepared PCL/GO membranes were subjected to a 'chemical-free' GO post-reductive process using UV (PCL/GO/UV) irradiation. The PCL/rGO membranes exhibited 2.5 times higher flux than previously reported biocompatible polymer membranes for cell culture bioreactors, which was attributed to the highly interconnected porosity. On the other hand, the formation of PCL-graphene oxide composites in the PCL/GO and PCL/GO/UV membranes was not conclusive according to spectroscopic analyses, thermal analyses and mechanical characterization, probably due to the low graphene oxide loading in the membranes (0.1%w/w). The presence of graphene oxide-based nanomaterials in the polymer matrix slightly reduced the mechanical properties of the PCL-graphene oxide membranes by limiting the polymer chain mobility in comparison to that of the plain PCL membranes. However, their mechanical stability was sufficient for the applications pursued. Finally, the biocompatibility assay indicated that the incorporation of GO and rGO into the PCL matrix enhanced the uniform distribution and morphology of the glioblastoma cells on the surface of the PCL-graphene oxide membranes.Financial support of the Cantabria Explora call through project JP03.640.69 is gratefully acknowledged

    Boron doped diamond electrooxidation of 6:2 fluorotelomers and perfluorocarboxylic acids. Application to industrial wastewaters treatment

    Get PDF
    The aim of this study was to determine the viability of electrochemical oxidation to degrade and mineralize poly- and perfluoroalkyl substances (PFASs) in wastewaters from an industrial facility dedicated to the production of side-chain-fluorinated polymers and fluorotelomer-based products for fire-fighting foams. 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB, 1111 μg/L), 6:2 fluorotelomer sulfonic acid (6:2 FTSA, 242.5 μg/L) and 6:2 fluorotelomer sulfonamide propyl N,N dimethylamine (M4, 34.4 μg/L) were the most abundant PFASs in the industrial wastewater, that also contained perfluorocarboxylic acids (ΣPFCAs, 12.2 μg/L), high TOC and chloride as main anion. 2 L samples were treated in bench scale experiments performed at a current density of 50 mA/cm2, in a commercial cell equipped with a boron doped diamond (BDD) anode (70 cm2). 97.1% of the initial PFASs content was removed after 8 h of electrochemical treatment. Furthermore, the TOC removal (82.5%) and the fluoride release confirmed the PFASs mineralization. Based on the evolution of the different PFASs, electrochemical degradation pathways were proposed. Fluorotelomers sulfonamides 6:2 FTAB and M4 would be degraded into 6:2 FTSA, which conversely would give rise to PFHpA and preferentially PFHxA. The latter PFCAs were transformed into shorter-chain PFCAs, and eventually into CO2 and fluoride. The reported results support the technical viability of BDD electrooxidation for the treatment of PFASs in industrial wastewater.This work was supported by the Spanish Ministry of Economy and Competitiveness (CTM2013-44081-R and CTM2016-75509-R). B. Gomez also thanks the FPI postgraduate research grant (BES-2014-071045)

    On the quest of reliable 3D dynamic in vitro blood-brain barrier models using polymer hollow fiber membranes: pitfalls, progress, and future perspectives

    Get PDF
    With the increasing concern of neurodegenerative diseases, the development of new therapies and effective pharmaceuticals targeted to central nervous system (CNS) illnesses is crucial for ensuring social and economic sustainability in an ageing world. Unfortunately, many promising treatments at the initial stages of the pharmaceutical development process, that is at the in vitro screening stages, do not finally show the expected results at the clinical level due to their inability to cross the human blood-brain barrier (BBB), highlighting the inefficiency of in vitro BBB models to recapitulate the real functionality of the human BBB. In the last decades research has focused on the development of in vitro BBB models from basic 2D monolayer cultures to 3D cell co-cultures employing different system configurations. Particularly, the use of polymeric hollow fiber membranes (HFs) as scaffolds plays a key role in perfusing 3D dynamic in vitro BBB (DIV-BBB) models. Their incorporation into a perfusion bioreactor system may potentially enhance the vascularization and oxygenation of 3D cell cultures improving cell communication and the exchange of nutrients and metabolites through the microporous membranes. The quest for developing a benchmark 3D dynamic in vitro blood brain barrier model requires the critical assessment of the different aspects that limits the technology. This article will focus on identifying the advantages and main limitations of the HFs in terms of polymer materials, microscopic porous morphology, and other practical issues that play an important role to adequately mimic the physiological environment and recapitulate BBB architecture. Based on this study, we consider that future strategic advances of this technology to become fully implemented as a gold standard DIV-BBB model will require the exploration of novel polymers and/or composite materials, and the optimization of the morphology of the membranes towards thinner HFs (<50 μm) with higher porosities and surface pore sizes of 1–2 µm to facilitate the intercommunication via regulatory factors between the cell co-culture models of the BBB.This work was financially supported by projects PID2019-105827RB-I00 and PCI2018-092929 (fifth EIG-Concert Japan joint call) funded by MCIN/AEI/10.13039/501100011033

    Factors affecting mass transport properties of poly(Ɛ-caprolactone) membranes for tissue engineering bioreactors

    Get PDF
    High porosity and mass transport properties of microfiltration polymeric membranes benefit nutrients supply to cells when used as scaffolds in interstitial perfusion bioreactors for tissue engineering. High nutrients transport is assumed when pore size and porosity of the membrane are in the micrometric range. The present work demonstrates that the study of membrane fouling by proteins present in the culture medium, though not done usually, should be included in the routine testing of new polymer membranes for this intended application. Two poly(ε-caprolactone) microfiltration membranes presenting similar average pore size (approximately 0.7 µm) and porosity (>80%) but different external surface porosity and pore size have been selected as case studies. The present work demonstrates that a membrane with lower surface pore abundance and smaller external pore size (approximately 0.67 µm), combined with adequate hydrodynamics and tangential flow filtration mode is usually more convenient to guarantee high flux of nutrients. On the contrary, having large external pore size (approximately 1.70 µm) and surface porosity would incur important internal protein fouling that could not be prevented with the operation mode and hydrodynamics of the perfusion system. Additionally, the use of glycerol in the drying protocols of the membranes might cause plasticization and a consequent reduction of mass transport properties due to membrane compaction by the pressure exerted to force perfusion. Therefore, preferentially, drying protocols that omit the use of plasticizing agents are recommended.This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO, SPAIN-FEDER 2014–2020) through project CTM2016-75509-R

    Photocatalytic degradation and mineralization of perfluorooctanoic acid (PFOA) using a composite TiO2 -rGO catalyst

    Get PDF
    The inherent resistance of perfluoroalkyl substances (PFASs) to biological degradation makes necessary to develop advanced technologies for the abatement of this group of hazardous substances. The present work investigated the photocatalytic decomposition of perfluorooctanoic acid (PFOA) using a composite catalyst based on TiO2 and reduced graphene oxide (95% TiO2/5% rGO) that was synthesized using a facile hydrothermal method. The efficient photoactivity of the TiO2-rGO (0.1 g L-1) composite was confirmed for PFOA (0.24 mmol L-1) degradation that reached 93 ± 7% after 12 h of UV-vis irradiation using a medium pressure mercury lamp, a great improvement compared to the TiO2 photocatalysis (24 ± 11% PFOA removal) and direct photolysis (58 ± 9%). These findings indicate that rGO provided the suited properties of TiO2-rGO, possibly as a result of acting as electron acceptor and avoiding the high recombination electron/hole pairs. The release of fluoride and the formation of shorter-chain perfluorocarboxilyc acids, that were progressively eliminated in a good match with the analysed reduction of total organic carbon, is consistent with a step-by-step PFOA decomposition via photogenerated hydroxyl radicals. Finally, the apparent first order rate constants of the TiO2-rGO UV-vis PFOA decompositions, and the intermediate perfluorcarboxylic acids were found to increase as the length of the carbon chain was shorter.Financial support from projects CTM2013-44081-R, CTM2015-69845-R and CTM2016-75509-R (MINECO, SPAIN-FEDER 2014–2020) is acknowledged. B. Gomez thanks the FPI scholarship (BES-2014-071045)
    corecore