21 research outputs found

    Investigating Perceptual Congruence Between Data and Display Dimensions in Sonification

    Get PDF
    The relationships between sounds and their perceived meaning and connotations are complex, making auditory perception an important factor to consider when designing sonification systems. Listeners often have a mental model of how a data variable should sound during sonification and this model is not considered in most data:sound mappings. This can lead to mappings that are difficult to use and can cause confusion. To investigate this issue, we conducted a magnitude estimation experiment to map how roughness, noise and pitch relate to the perceived magnitude of stress, error and danger. These parameters were chosen due to previous findings which suggest perceptual congruency between these auditory sensations and conceptual variables. Results from this experiment show that polarity and scaling preference are dependent on the data:sound mapping. This work provides polarity and scaling values that may be directly utilised by sonification designers to improve auditory displays in areas such as accessible and mobile computing, process-monitoring and biofeedback

    Genetic and Environmental Determinants of Immune Response to Cutaneous Melanoma

    Get PDF
    The immune response to melanoma improves the survival in untreated patients and predicts the response to immune checkpoint blockade. Here, we report genetic and environmental predictors of the immune response in a large primary cutaneous melanoma cohort. Bioinformatic analysis of 703 tumor transcriptomes was used to infer immune cell infiltration and to categorize tumors into immune subgroups, which were then investigated for association with biological pathways, clinicopathologic factors, and copy number alterations. Three subgroups, with “low”, “intermediate”, and “high” immune signals, were identified in primary tumors and replicated in metastatic tumors. Genes in the low subgroup were enriched for cell-cycle and metabolic pathways, whereas genes in the high subgroup were enriched for IFN and NF-ÎșB signaling. We identified high MYC expression partially driven by amplification, HLA-B downregulation, and deletion of IFNÎł and NF-ÎșB pathway genes as the regulators of immune suppression. Furthermore, we showed that cigarette smoking, a globally detrimental environmental factor, modulates immunity, reducing the survival primarily in patients with a strong immune response. Together, these analyses identify a set of factors that can be easily assessed that may serve as predictors of response to immunotherapy in patients with melanoma. Significance: These findings identify novel genetic and environmental modulators of the immune response against primary cutaneous melanoma and predict their impact on patient survival

    Application of circulating cell-free tumor DNA profiles for therapeutic monitoring and outcome prediction in genetically heterogeneous metastatic melanoma

    Get PDF
    PURPOSE Circulating cell-free tumor DNA (ctDNA) reflects the heterogeneousspectrum of tumor-specific mutations, especially in systemic disease. We validated plasma-based assays that allow the dynamic quantitative detection of ctDNA as a prognostic biomarker for tumor load and prediction of therapy response in melanoma. MATERIALS and METHODS We analyzed plasma-derived ctDNA from a large training cohort (n = 96) of patients with advanced-stage melanoma, with assays for the BRAFV600E and NRASQ61 driver mutations as well as TERTC250T and TERTC228T promoter mutations. An independent patient cohort (n = 35) was used to validate the utility of ctDNA monitoring under mitogen-activated protein kinase–targeted or immune checkpoint therapies. RESULTS Elevated plasma ctDNA level at baseline was an independent prognostic factor of disease progression when compared with serum S100 and lactate dehydrogenase levels in multivariable analyses (hazard ratio [HR], 7.43; 95% CI, 1.01 to 55.19; P = .05). The change in ctDNA levels during therapy correlated with treatment response, where increasing ctDNA was predictive for shorter progression-free survival (eg, for BRAFV600EctDNA, HR, 3.70; 95% CI, 1.86 to 7.34; P < .001). Increasing ctDNA levels predicted disease progression significantly earlier than did routine radiologic scans (P < .05), with a mean lead time of 3.5 months. NRAS-mutant ctDNA was detected in a significant proportion of patients with BRAF-mutant tumors under therapy, but unexpectedly also at baseline. In vitro sensitivity studies suggested that this represents higher-than-expected intratumoral heterogeneity. The detection of NRASQ61 ctDNA in baseline samples of patients with BRAFV600E mutation who were treated with mitogen-activated protein kinase inhibitors significantly correlated with shorter progression-free survival (HR, 3.18; 95% CI, 1.31 to 7.68; P = .03) and shorter overall survival (HR, 4.08; 95% CI, 1.57 to 10.58; P = .01). CONCLUSION Our results show the potential role of ctDNA measurement as a sensitive monitoring and prediction tool for the early assessment of disease progression and therapeutic response in patients with metastaticmelanoma

    Transcriptomic Analysis Reveals Prognostic Molecular Signatures of Stage I Melanoma

    Get PDF
    Purpose: Previously identified transcriptomic signatures have been based on primary and metastatic melanomas with relatively few American Joint Committee on Cancer (AJCC) stage I tumors, given difficulties in sampling small tumors. The advent of adjuvant therapies has highlighted the need for better prognostic and predictive biomarkers, especially for AJCC stage I and stage II disease. Experimental Design: A total of 687 primary melanoma transcriptomes were generated from the Leeds Melanoma Cohort (LMC). The prognostic value of existing signatures across all the AJCC stages was tested. Unsupervised clustering was performed, and the prognostic value of the resultant signature was compared with that of sentinel node biopsy (SNB) and tested as a biomarker in three published immunotherapy datasets. Results: Previous Lund and The Cancer Genome Atlas signatures predicted outcome in the LMC dataset (P = 10−8 to 10−4) but showed a significant interaction with AJCC stage (P = 0.04) and did not predict outcome in stage I tumors (P = 0.3–0.7). Consensus-based classification of the LMC dataset identified six classes that predicted outcome, notably in stage I disease. LMC class was a similar indicator of prognosis when compared with SNB, and it added prognostic value to the genes reported by Gerami and colleagues. One particular LMC class consistently predicted poor outcome in patients receiving immunotherapy in two of three tested datasets. Biological characterization of this class revealed high JUN and AXL expression and evidence of epithelial-to-mesenchymal transition. Conclusions: A transcriptomic signature of primary melanoma was identified with prognostic value, including in stage I melanoma and in patients undergoing immunotherapy

    Sugarcane (Saccharum X officinarum): A Reference Study for the Regulation of Genetically Modified Cultivars in Brazil

    Get PDF
    Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30 years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars

    High-Resolution Copy Number Patterns From Clinically Relevant FFPE Material

    Get PDF
    Systematic tumour profiling is essential for biomarker research and clinically for assessing response to therapy. Solving the challenge of delivering informative copy number (CN) profiles from formalin-fixed paraffin embedded (FFPE) material, the only likely readily available biospecimen for most cancers, involves successful processing of small quantities of degraded DNA. To investigate the potential for analysis of such lesions, whole-genome CNVseq was applied to 300 FFPE primary tumour samples, obtained from a large-scale epidemiological study of melanoma. The quality and the discriminatory power of CNVseq was assessed. Libraries were successfully generated for 93% of blocks, with input DNA quantity being the only predictor of success (success rate dropped to 65% if < 20ng available); 3% of libraries were dropped because of low sequence alignment rates. Technical replicates showed high reproducibility. Comparison with targeted CN assessment showed consistency with the Next Generation Sequencing (NGS) analysis. We were able to detect and distinguish CN changes with a resolution of 10kb. To demonstrate performance, we report the spectrum of genomic CN alterations (CNAs) detected at 9p21, the major site of CN change in melanoma. This successful analysis of CN in FFPE material using NGS provides proof of principle for intensive examination of population-based samples
    corecore