150 research outputs found

    The Johnson-Segalman model with a diffusion term in Couette flow

    Full text link
    We study the Johnson-Segalman (JS) model as a paradigm for some complex fluids which are observed to phase separate, or ``shear-band'' in flow. We analyze the behavior of this model in cylindrical Couette flow and demonstrate the history dependence inherent in the local JS model. We add a simple gradient term to the stress dynamics and demonstrate how this term breaks the degeneracy of the local model and prescribes a much smaller (discrete, rather than continuous) set of banded steady state solutions. We investigate some of the effects of the curvature of Couette flow on the observable steady state behavior and kinetics, and discuss some of the implications for metastability.Comment: 14 pp, to be published in Journal of Rheolog

    Time Resolved Correlation measurements of temporally heterogeneous dynamics

    Full text link
    Time Resolved Correlation (TRC) is a recently introduced light scattering technique that allows to detect and quantify dynamic heterogeneities. The technique is based on the analysis of the temporal evolution of the speckle pattern generated by the light scattered by a sample, which is quantified by c_I(t,τ)c\_I(t,\tau), the degree of correlation between speckle images recorded at time tt and t+τt+\tau. Heterogeneous dynamics results in significant fluctuations of c_I(t,τ)c\_I(t,\tau) with time tt. We describe how to optimize TRC measurements and how to detect and avoid possible artifacts. The statistical properties of the fluctuations of c_Ic\_I are analyzed by studying their variance, probability distribution function, and time autocorrelation function. We show that these quantities are affected by a noise contribution due to the finite number NN of detected speckles. We propose and demonstrate a method to correct for the noise contribution, based on a NN\to \infty extrapolation scheme. Examples from both homogeneous and heterogeneous dynamics are provided. Connections with recent numerical and analytical works on heterogeneous glassy dynamics are briefly discussed.Comment: 19 pages, 15 figures. Submitted to PR

    Shear-banding in a lyotropic lamellar phase, Part 2: Temporal fluctuations

    Full text link
    We analyze the temporal fluctuations of the flow field associated to a shear-induced transition in a lyotropic lamellar phase: the layering transition of the onion texture. In the first part of this work [Salmon et al., submitted to Phys. Rev. E], we have evidenced banded flows at the onset of this shear-induced transition which are well accounted for by the classical picture of shear-banding. In the present paper, we focus on the temporal fluctuations of the flow field recorded in the coexistence domain. These striking dynamics are very slow (100--1000s) and cannot be due to external mechanical noise. Using velocimetry coupled to structural measurements, we show that these fluctuations are due to a motion of the interface separating the two differently sheared bands. Such a motion seems to be governed by the fluctuations of σ\sigma^\star, the local stress at the interface between the two bands. Our results thus provide more evidence for the relevance of the classical mechanical approach of shear-banding even if the mechanism leading to the fluctuations of σ\sigma^\star remains unclear

    Shear-banding in a lyotropic lamellar phase, Part 1: Time-averaged velocity profiles

    Full text link
    Using velocity profile measurements based on dynamic light scattering and coupled to structural and rheological measurements in a Couette cell, we present evidences for a shear-banding scenario in the shear flow of the onion texture of a lyotropic lamellar phase. Time-averaged measurements clearly show the presence of structural shear-banding in the vicinity of a shear-induced transition, associated to the nucleation and growth of a highly sheared band in the flow. Our experiments also reveal the presence of slip at the walls of the Couette cell. Using a simple mechanical approach, we demonstrate that our data confirms the classical assumption of the shear-banding picture, in which the interface between bands lies at a given stress σ\sigma^\star. We also outline the presence of large temporal fluctuations of the flow field, which are the subject of the second part of this paper [Salmon {\it et al.}, submitted to Phys. Rev. E]

    Rheology of Lamellar Liquid Crystals in Two and Three Dimensions: A Simulation Study

    Full text link
    We present large scale computer simulations of the nonlinear bulk rheology of lamellar phases (smectic liquid crystals) at moderate to large values of the shear rate (Peclet numbers 10-100), in both two and three dimensions. In two dimensions we find that modest shear rates align the system and stabilise an almost regular lamellar phase, but high shear rates induce the nucleation and proliferation of defects, which in steady state is balanced by the annihilation of defects of opposite sign. The critical shear rate at onset of this second regime is controlled by thermodynamic and kinetic parameters; we offer a scaling analysis that relates the critical shear rate to a critical "capillary number" involving those variables. Within the defect proliferation regime, the defects may be partially annealed by slowly decreasing the applied shear rate; this causes marked memory effects, and history-dependent rheology. Simulations in three dimensions show instead shear-induced ordering even at the highest shear rates studied here. This suggests that the critical shear rate shifts markedly upward on increasing dimensionality. This may in part reflect the reduced constraints on defect motion, allowing them to find and annihilate each other more easily. Residual edge defects in the 3D aligned state mostly point along the flow velocity, an orientation impossible in two dimensions.Comment: 18 pages, 12 figure

    Phase Separation of Rigid-Rod Suspensions in Shear Flow

    Full text link
    We analyze the behavior of a suspension of rigid rod-like particles in shear flow using a modified version of the Doi model, and construct diagrams for phase coexistence under conditions of constant imposed stress and constant imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling nematic states. We calculate the effective constitutive relations that would be measured through the regime of phase separation into shear bands. We calculate phase coexistence by examining the stability of interfacial steady states and find a wide range of possible ``phase'' behaviors.Comment: 23 pages 19 figures, revised version to be published in Physical Review
    corecore