15,456 research outputs found

    Fitting isochrones to open cluster photometric data III. Estimating metallicities from UBV photometry

    Full text link
    The metallicity is a critical parameter that affects the correct determination fundamental characteristics stellar cluster and has important implications in Galactic and Stellar evolution research. Fewer than 10 % of the 2174 currently catalog open clusters have their metallicity determined in the literature. In this work we present a method for estimating the metallicity of open clusters via non-subjective isochrone fitting using the cross-entropy global optimization algorithm applied to UBV photometric data. The free parameters distance, reddening, age, and metallicity simultaneously determined by the fitting method. The fitting procedure uses weights for the observational data based on the estimation of membership likelihood for each star, which considers the observational magnitude limit, the density profile of stars as a function of radius from the center of the cluster, and the density of stars in multi-dimensional magnitude space. We present results of [Fe/H] for nine well-studied open clusters based on 15 distinct UBV data sets. The [Fe/H] values obtained in the ten cases for which spectroscopic determinations were available in the literature agree, indicating that our method provides a good alternative to determining [Fe/H] by using an objective isochrone fitting. Our results show that the typical precision is about 0.1 dex

    Mechanism of magnetostructural transformation in multifunctional Mn3_3GaC

    Full text link
    Mn3_3GaC undergoes a ferromagnetic to antiferromagnetic, volume discontinuous cubic-cubic phase transition as a function of temperature, pressure and magnetic field. Through a series of temperature dependent x-ray absorption fine structure spectroscopy experiments at the Mn K and Ga K edge, it is shown that the first order magnetic transformation in Mn3_3GaC is entirely due to distortions in Mn sub-lattice and with a very little role for Mn-C interactions. The distortion in Mn sub-lattice results in long and short Mn-Mn bonds with the longer Mn-Mn bonds favoring ferromagnetic interactions and the shorter Mn-Mn bonds favoring antiferromagnetic interactions. At the first order transition, the shorter Mn-Mn bonds exhibit an abrupt decrease in their length resulting in an antiferromagnetic ground state and a strained lattice.Comment: Accepted in J. Appl. Phys. Please contact authors for supplementary informatio

    Financial return of crowdfunding platforms: are funding trends and success rates changing in the Covid-19 era?

    Get PDF
    The online crowdfunding platforms become the main way of nonprofits to raise funds during the COVID-19 pandemic, due to lockdown and social and physical distancing policies. One year after the beginning of the current global health pandemic, this study applies quantitative methods for providing results on the evolution of the amounts donated for nonprofits’ projects through an online crowdfunding platform, comparing the success rates of the campaigns during COVID-19 pandemic with financial results in previous years. Moreover, this study focusses on the determinants of financial return of the campaigns, investigating the amount of funding goals and the text features used for describing the crowdfunding campaign. The findings open up further investigations on the financial strategy applied by nonprofits during crises.info:eu-repo/semantics/publishedVersio

    Shelf-Ocean material exchange influencing the Atlantic chemical composition off NW Iberian margin since the last glaciation

    Get PDF
    Rivers are the main conduit of sediment to the shelf. The basin geology, the drainage area and the discharge rate are the major factors that determine their sediment load (Milliman and Syvistski, 1992). Besides suspended particles, dissolved components may also give some information on the eroded crust. Sr isotopes in carbonate shells of biological organisms have been used to study, in the geological record, the influence exerted by the chemical weathering of the continental crust on the seawater composition (Macdougall, 1991). In this work, Sr isotope ratios obtained in tests of foraminifera representing the last 40 ka are presented and discussed in the scope of the palaeogeographical evolution of NW Iberia. This work aims to present and discuss the results of Sr isotope analyses (performed, by TIMS, in the Isotope Geology Laboratory of the University of Aveiro) of tests of two species of foraminifera, from nine samples taken along the OMEX core KC 024-19 (181 cm; 42°08’98’’N, 10°29´96’’W, and 2765m), collected in the Galicia Bank area, off Galicia. Taking into account that Sr contained in the carbonate tests is usually considered as preserving the signature of the contemporaneous seawater, one planktonic species (Globigerina bulloides) and one benthic species (Cibicides wuellerstorfi) were selected in order to try to detect Sr isotope variations both through time and between two different levels of the water column. The core age model, which records the last 40 ka, is based on a combination of oxygen isotope stratigraphy, eight AMS 14C datings and the synchronisation of the last four Heinrich Events in the Iberian Margin sedimentary records. As a whole, the obtained 87Sr/86Sr ratios vary between 0.709209 and 0.709108, with a mean 2σ error of 0.000025. These values lie within the range of modern marine Sr isotope ratios (0.70910-0.70922), as previously defined using analyses of both seawater and marine carbonates (see compilation by Faure and Mensing, 2005). Despite their small variation, the 87Sr/86Sr ratios obtained in G. bulloides seem to indicate that Sr dissolved in seawater at the KC 024-19 core site became slightly less radiogenic after the Last Glacial Maximum (LGM). This decrease is concomitant with diminishing amounts of the detrital components in the sediments (Fig. 1). Therefore, both the composition of dissolved Sr, as revealed by results on tests of planktonic foraminifera, and the proportions of suspended terrigenous particulate material arriving at the KC 024-19 site point to a decreasing importance of the contribution of the erosion of the Iberian Variscan crust since the Last Glacial Maximum and in the Holocene. The 87Sr/86Sr ratios measured in tests of benthic foraminifera (C. wuellerstorfi) are more erratic and no correlation can be established with palaeogeographical/palaeoclimatic constraints. The difference between the behaviour of Sr compositions in G. bulloides and C. wuellerstorfi may indicate that whilst the planktonic foraminifera should reproduce very closely the seawater composition, the benthic organisms should, in addition to the major role of seawater, also be affected by some sort of interaction with the sediments. As such, planktonic foraminifera are probably more reliable indicators of seawater composition in studies involving very small periods and corresponding very slight variations of the 87Sr/86Sr ratios. Taking into account that G. bulloides is a common planktonic species (living mostly in the first 50m of the water column), whose tests seem to be in equilibrium with sea water composition, variations in its 87Sr/86Sr ratios can be related with changes in the chemical composition of the water of the Atlantic Ocean off NW Iberian Margin. The highest 87Sr/86Sr values are contemporaneous with a period of low sea level (about -140 m; Dias et al., 2000) during the LGM. According to Dias et al. (2000) at 18 ka BP the shoreline was close to the shelf break. The summital parts of the Gerês and Estrela mountains were covered by local glaciers and close to the coast freezing occurred frequently. The river catchments, which extended far to the shelf, received more rainfall due to a longer, compared to present day conditions, wet season, which promoted both physical and chemical weathering. Higher pluviosity combined with the effect of spring ice melting maintained high river discharge and consequently caused very important sediment supply to the coastal zone. The extremely narrow shelf was a very energetic environment due to sea bottom inclination and very limited long wave refraction. Therefore, at that time, a long wet season and very competent rivers should have caused important erosion of the Variscan basement in NW Iberia. Additionally, then, the shoreline was much closer to the KC 024-19 site. The combination of all these factors favoured an important deposition of terrigenous sediments and the local slight enrichment in radiogenic Sr of the seawater. With sea level rise, after the deglaciation and during the Holocene, the river estuaries became progressively far away from the shelf break. Their competence of transport also became progressively reduced and the offshore transport of detrital sediments became progressively lower. Conversely the biogenic carbonate proportion in the sediments increased, due to lower dilution by the terrigenous particles. Simultaneously, the values of 87Sr/86Sr in the seawater at the KC 024-19 site became lower, as a consequence of a complete homogenization with the ocean global composition, which was now more effective with the increasing distance towards shoreline

    Pair creation of higher dimensional black holes on a de Sitter background

    Full text link
    We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstrom-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, that describe respectively a pair accelerated by a string and by an electromagnetic field, are not know yet in a higher dimensional spacetime.Comment: 10 pages; 1 figure included; RexTeX4. v2: References added. Published version. v3: Typo in equation (46) fixe

    Dynamical amplification of magnetoresistances and Hall currents up to the THz regime

    Full text link
    Spin-orbit-related effects offer a highly promising route for reading and writing information in magnetic units of future devices. These phenomena rely not only on the static magnetization orientation but also on its dynamics to achieve fast switchings that can reach the THz range. In this work, we consider Co/Pt and Fe/W bilayers to show that accounting for the phase difference between different processes is crucial to the correct description of the dynamical currents. By tuning each system towards its ferromagnetic resonance, we reveal that dynamical spin Hall angles can non-trivially change sign and be boosted by over 500%, reaching giant values. We demonstrate that charge and spin pumping mechanisms can greatly magnify or dwindle the currents flowing through the system, influencing all kinds of magnetoresistive and Hall effects, thus impacting also dc and second harmonic experimental measurements.Comment: 19 pages, 4 figures, Supplementary Informatio
    corecore