21 research outputs found

    Hawking temperature of rotating charged black strings from tunneling

    Full text link
    Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings

    Nariai, Bertotti-Robinson and anti-Nariai solutions in higher dimensions

    Full text link
    We find all the higher dimensional solutions of the Einstein-Maxwell theory that are the topological product of two manifolds of constant curvature. These solutions include the higher dimensional Nariai, Bertotti-Robinson and anti-Nariai solutions, and the anti-de Sitter Bertotti-Robinson solutions with toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit results for any dimension D>3. These solutions are generated from the appropriate extremal limits of the higher dimensional near-extreme black holes in a de Sitter, and anti-de Sitter backgrounds. Thus, we also find the mass and the charge parameters of the higher dimensional extreme black holes as a function of the radius of the degenerate horizon.Comment: 10 pages, 11 figures, RevTeX4. References added. Published versio

    Hairy rotating black string in the Einstein-Maxwell-Higgs system

    Full text link
    We show numerically that the Abelian Higgs field equations in the background of a four-dimensional rotating charged black string have vortex solutions. These solutions which have axial symmetry show that the rotating black string can support the Abelian Higgs field as hair. We find that one encounters with an electric field coupled to the Higgs scalar field for the case of rotating black string. This electric field is due to an electric charge per unit length, which increases as the rotation parameter becomes larger. We also find that the vortex thickness decreases as the rotation parameter grows up. Finally we consider the self-gravity of the Abelian Higgs field and show that the effect of the vortex is to induce a deficit angle in the metric under consideration which decreases as the rotation parameter increases.Comment: 16 pages, 8 figures, references added, some minor corrections don

    The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics

    Full text link
    In two previous papers we have analyzed the C-metric in a background with a cosmological constant, namely the de Sitter (dS) C-metric, and the anti-de Sitter (AdS) C-metric, following the work of Kinnersley and Walker for the flat C-metric. These exact solutions describe a pair of accelerated black holes in the flat or cosmological constant background, with the acceleration A being provided by a strut in-between that pushes away the two black holes. In this paper we analyze the extremal limits of the C-metric in a background with generic cosmological constant. We follow a procedure first introduced by Ginsparg and Perry in which the Nariai solution, a spacetime which is the direct topological product of the 2-dimensional dS and a 2-sphere, is generated from the four-dimensional dS-Schwarzschild solution by taking an appropriate limit, where the black hole event horizon approaches the cosmological horizon. Similarly, one can generate the Bertotti-Robinson metric from the Reissner-Nordstrom metric by taking the limit of the Cauchy horizon going into the event horizon of the black hole, as well as the anti-Nariai by taking an appropriate solution and limit. Using these methods we generate the C-metric counterparts of the Nariai, Bertotti-Robinson and anti-Nariai solutions, among others. One expects that the solutions found in this paper are unstable and decay into a slightly non-extreme black hole pair accelerated by a strut or by strings. Moreover, the Euclidean version of these solutions mediate the quantum process of black hole pair creation, that accompanies the decay of the dS and AdS spaces

    Horizonless Rotating Solutions in (n+1)(n+1)-dimensional Einstein-Maxwell Gravity

    Full text link
    We introduce two classes of rotating solutions of Einstein-Maxwell gravity in n+1n+1 dimensions which are asymptotically anti-de Sitter type. They have no curvature singularity and no horizons. The first class of solutions, which has a conic singularity yields a spacetime with a longitudinal magnetic field and kk rotation parameters. We show that when one or more of the rotation parameters are non zero, the spinning brane has a net electric charge that is proportional to the magnitude of the rotation parameters. The second class of solutions yields a spacetime with an angular magnetic field and % \kappa boost parameters. We find that the net electric charge of these traveling branes with one or more nonzero boost parameters is proportional to the magnitude of the velocity of the brane. We also use the counterterm method inspired by AdS/CFT correspondence and calculate the conserved quantities of the solutions. We show that the logarithmic divergencies associated to the Weyl anomalies and matter field are zero, and the rr divergence of the action can be removed by the counterterm method.Comment: 14 pages, references added, Sec. II amended, an appendix added. The version to appear in Phys. Rev.

    Four-dimensional anti-de Sitter black holes from a three-dimensional perspective: Full complexity

    Full text link
    The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed.Comment: 26 pages, 1 figure, Uses revtex

    Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory

    Get PDF
    We construct spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas in Born-Infeld electrodynamics coupled to Einstein gravity, and we analyze their stability under radial perturbations. For different values of the Born-Infeld parameter and the charge, we compare the results with those obtained in a previous work for Maxwell electrodynamics. The stability region in the parameter space reduces and then disappears as the value of the Born-Infeld parameter is modified in the sense of a larger departure from Maxwell theory.Comment: 9 pages, 6 figures; v2: improved versio

    Thin-shell wormholes from black holes with dilaton and monopole fields

    Full text link
    We provide a new type of thin-shell wormhole from the black holes with dilaton and monopole fields. The dilaton and monopole that built the black holes may supply fuel to construct the wormholes. Several characteristics of this thin-shell wormhole have been discussed. Finally, we discuss the stability of the thin-shell wormholes with a "phantom-like" equation of state for the exotic matter at the throat.Comment: 6 pages and 3 figures, some typos are corrected and accepted in Int.J.Theor.Phy

    Stability of Non-asymptotically flat thin-shell wormholes in generalized dilaton-axion gravity

    Full text link
    We construct a new type of thin-shell wormhole for non-asymptotically flat charged black holes in generalized dilaton-axion gravity inspired by low-energy string theory using cut-and-paste technique. We have shown that this thin shell wormhole is stable. The most striking feature of our model is that the total amount of exotic matter needed to support the wormhole can be reduced as desired with the suitable choice of the value of a parameter. Various other aspects of thin-shell wormhole are also analyzed.Comment: 15 pages and 11 figures. Minor revisions have been done. Accepted in Int.J.Theor.Phy

    Wearable Biomonitoring Platform for the Assessment of Stress and its Impact on Cognitive Performance of Firefighters: An Experimental Study

    Get PDF
    Background: Stress is a complex process with an impact on health and performance. The use of wearable sensor-based monitoring systems offers interesting opportunities for advanced health care solutions for stress analysis. Considering the stressful nature of firefighting and its importance for the community’s safety, this study was conducted for firefighters. Objectives: A biomonitoring platform was designed, integrating different biomedical systems to enable the acquisition of real time Electrocardiogram (ECG), computation of linear Heart Rate Variability (HRV) features and collection of perceived stress levels. This platform was tested using an experimental protocol, designed to understand the effect of stress on firefighter’s cognitive performance, and whether this effect is related to the autonomic response to stress. Method: The Trier Social Stress Test (TSST) was used as a testing platform along with a 2-Choice Reaction Time Task. Linear HRV features from the participants were acquired using an wearable ECG. Self-reports were used to assess perceived stress levels. Results: The TSST produced significant changes in some HRV parameters (AVNN, SDNN and LF/HF) and subjective measures of stress, which recovered after the stress task. Although these short-term changes in HRV showed a tendency to normalize, an impairment on cognitive performance was found after performing the stress event. Conclusion: Current findings suggested that stress compromised cognitive performance and caused a measurable change in autonomic balance. Our wearable biomonitoring platform proved to be a useful tool for stress assessment and quantification. Future studies will implement this biomonitoring platform for the analysis of stress in ecological settings
    corecore