2,908 research outputs found

    Kerr-AdS and its Near-horizon Geometry: Perturbations and the Kerr/CFT Correspondence

    Get PDF
    We investigate linear perturbations of spin-s fields in the Kerr-AdS black hole and in its near-horizon geometry (NHEK-AdS), using the Teukolsky master equation and the Hertz potential. In the NHEK-AdS geometry we solve the associated angular equation numerically and the radial equation exactly. Having these explicit solutions at hand, we search for linear mode instabilities. We do not find any (non-)axisymmetric instabilities with outgoing boundary conditions. This is in agreement with a recent conjecture relating the linearized stability properties of the full geometry with those of its near-horizon geometry. Moreover, we find that the asymptotic behaviour of the metric perturbations in NHEK-AdS violates the fall-off conditions imposed in the formulation of the Kerr/CFT correspondence (the only exception being the axisymmetric sector of perturbations).Comment: 26 pages. 4 figures. v2: references added. matches published versio

    GLUT1-mediated glucose uptake plays a crucial role during Plasmodium hepatic infection.

    Get PDF
    Intracellular pathogens have evolved mechanisms to ensure their survival and development inside their host cells. Here, we show that glucose is a pivotal modulator of hepatic infection by the rodent malaria parasite Plasmodium berghei and that glucose uptake via the GLUT1 transporter is specifically enhanced in P. berghei-infected cells. We further show that ATP levels of cells containing developing parasites are decreased, which is known to enhance membrane GLUT1 activity. In addition, GLUT1 molecules are translocated to the membrane of the hepatic cell, increasing glucose uptake at later stages of infection. Chemical inhibition of GLUT1 activity leads to a decrease in glucose uptake and the consequent impairment of hepatic infection, both in vitro and in vivo. Our results reveal that changes in GLUT1 conformation and cellular localization seem to be part of an adaptive host response to maintain adequate cellular nutrition and energy levels, ensuring host cell survival and supporting P. berghei hepatic development

    New first trimester crown-rump length's equations optimized by structured data collection from a French general population

    Full text link
    --- Objectives --- Prior to foetal karyotyping, the likelihood of Down's syndrome is often determined combining maternal age, serum free beta-HCG, PAPP-A levels and embryonic measurements of crown-rump length and nuchal translucency for gestational ages between 11 and 13 weeks. It appeared important to get a precise knowledge of these scan parameters' normal values during the first trimester. This paper focused on crown-rump length. --- METHODS --- 402 pregnancies from in-vitro fertilization allowing a precise estimation of foetal ages (FA) were used to determine the best model that describes crown-rump length (CRL) as a function of FA. Scan measures by a single operator from 3846 spontaneous pregnancies representative of the general population from Northern France were used to build a mathematical model linking FA and CRL in a context as close as possible to normal scan screening used in Down's syndrome likelihood determination. We modeled both CRL as a function of FA and FA as a function of CRL. For this, we used a clear methodology and performed regressions with heteroskedastic corrections and robust regressions. The results were compared by cross-validation to retain the equations with the best predictive power. We also studied the errors between observed and predicted values. --- Results --- Data from 513 spontaneous pregnancies allowed to model CRL as a function of age of foetal age. The best model was a polynomial of degree 2. Datation with our equation that models spontaneous pregnancies from a general population was in quite agreement with objective datations obtained from 402 IVF pregnancies and thus support the validity of our model. The most precise measure of CRL was when the SD was minimal (1.83mm), for a CRL of 23.6 mm where our model predicted a 49.4 days of foetal age. Our study allowed to model the SD from 30 to 90 days of foetal age and offers the opportunity of using Zscores in the future to detect growth abnormalities. --- Conclusion --- With powerful statistical tools we report a good modeling of the first trimester embryonic growth in the general population allowing a better knowledge of the date of fertilization useful in the ultrasound screening of Down's syndrome. The optimal period to measure CRL and predict foetal age was 49.4 days (9 weeks of gestational age). Our results open the way to the detection of foetal growth abnormalities using CRL Zscores throughout the first trimester

    Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The hemibiotrophic fungus <it>Moniliophthora perniciosa </it>is the causal agent of Witches' broom, a disease of <it>Theobroma cacao</it>. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease.</p> <p>Results</p> <p>Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order <it>Agaricales</it>. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage <it>of M. perniciosa</it>, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a second in basidiomata, confirming their distinctiveness. The number of transcripts of the gene for plerototolysin B increased in reddish-pink mycelium and indicated an activation of the initial basidiomata production even at this culturing stage. Expression of the glucose transporter gene increased in mycelium after the stress, coinciding with a decrease of adenylate cyclase gene transcription. This indicated that nutrient uptake can be an important signal to trigger fruiting in this fungus.</p> <p>Conclusion</p> <p>The identification of genes with increased expression in this phase of the life cycle of <it>M. perniciosa </it>opens up new possibilities of controlling fungus spread as well as of genetic studies of biological processes that lead to basidiomycete fruiting. This is the first comparative morphologic study of the early development both <it>in vivo </it>and <it>in vitro </it>of <it>M. perniciosa </it>basidiomata and the first description of genes expressed at this stage of the fungal life cycle.</p

    Estimation of the solubility parameters of model plant surfaces and agrochemicals: a valuable tool for understanding plant surface interactions

    Get PDF
    Background Most aerial plant parts are covered with a hydrophobic lipid-rich cuticle, which is the interface between the plant organs and the surrounding environment. Plant surfaces may have a high degree of hydrophobicity because of the combined effects of surface chemistry and roughness. The physical and chemical complexity of the plant cuticle limits the development of models that explain its internal structure and interactions with surface-applied agrochemicals. In this article we introduce a thermodynamic method for estimating the solubilities of model plant surface constituents and relating them to the effects of agrochemicals. Results Following the van Krevelen and Hoftyzer method, we calculated the solubility parameters of three model plant species and eight compounds that differ in hydrophobicity and polarity. In addition, intact tissues were examined by scanning electron microscopy and the surface free energy, polarity, solubility parameter and work of adhesion of each were calculated from contact angle measurements of three liquids with different polarities. By comparing the affinities between plant surface constituents and agrochemicals derived from (a) theoretical calculations and (b) contact angle measurements we were able to distinguish the physical effect of surface roughness from the effect of the chemical nature of the epicuticular waxes. A solubility parameter model for plant surfaces is proposed on the basis of an increasing gradient from the cuticular surface towards the underlying cell wall. Conclusions The procedure enabled us to predict the interactions among agrochemicals, plant surfaces, and cuticular and cell wall components, and promises to be a useful tool for improving our understanding of biological surface interactions
    • 

    corecore