14,870 research outputs found

    An S3S_3 Model for Lepton Mass Matrices with Nearly Minimal Texture

    Full text link
    We propose a simple extension of the electroweak standard model based on the discrete S3S_3 symmetry that is capable of realizing a nearly minimal Fritzsch-type texture for the Dirac mass matrices of both charged leptons and neutrinos. This is achieved with the aid of additional Z5Z_5 and Z3Z_3 symmetries, one of which can be embedded in U(1)BLU(1)_{B-L}. Five complex scalar singlet fields are introduced in addition to the SM with right-handed neutrinos. Although more general, the modified texture of the model retains the successful features of the minimal texture without fine-tuning; namely, it accommodates the masses and mixing of the leptonic sector and relates the emergence of large leptonic mixing angles with the seesaw mechanism. For large deviations of the minimal texture, both quasidegenerate spectrum or inverted hierarchy are allowed for neutrino masses.Comment: 11pp, 2 figures. v2: vev alignment addressed, additional analysis performed; to appear in PR

    The Quest for an Intermediate-Scale Accidental Axion and Further ALPs

    Get PDF
    The recent detection of the cosmic microwave background polarimeter experiment BICEP2 of tensor fluctuations in the B-mode power spectrum basically excludes all plausible axion models where its decay constant is above 101310^{13} GeV. Moreover, there are strong theoretical, astrophysical, and cosmological motivations for models involving, in addition to the axion, also axion-like particles (ALPs), with decay constants in the intermediate scale range, between 10910^9 GeV and 101310^{13} GeV. Here, we present a general analysis of models with an axion and further ALPs and derive bounds on the relative size of the axion and ALP photon (and electron) coupling. We discuss what we can learn from measurements of the axion and ALP photon couplings about the fundamental parameters of the underlying ultraviolet completion of the theory. For the latter we consider extensions of the Standard Model in which the axion and the ALP(s) appear as pseudo Nambu-Goldstone bosons from the breaking of global chiral U(1)U(1) (Peccei-Quinn (PQ)) symmetries, occuring accidentally as low energy remnants from exact discrete symmetries. In such models, the axion and the further ALP are protected from disastrous explicit symmetry breaking effects due to Planck-scale suppressed operators. The scenarios considered exploit heavy right handed neutrinos getting their mass via PQ symmetry breaking and thus explain the small mass of the active neutrinos via a seesaw relation between the electroweak and an intermediate PQ symmetry breaking scale. We show some models that can accommodate simultaneously an axion dark matter candidate, an ALP explaining the anomalous transparency of the universe for γ\gamma-rays, and an ALP explaining the recently reported 3.55 keV gamma line from galaxies and clusters of galaxies, if the respective decay constants are of intermediate scale.Comment: 43pp, 4 figures. v2: version accepted for publication in JHE

    Closing the SU(3)LU(1)XSU(3)_L\otimes U(1)_X Symmetry at Electroweak Scale

    Full text link
    We show that some models with SU(3)CSU(3)LU(1)XSU(3)_C\otimes SU(3)_L\otimes U(1)_X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2)L+RSU(2)_{L+R} symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1)XU(1)_X's coupling constant, gXg_X, the sine of the weak mixing angle sinθW\sin\theta_W, and the mass of the WW boson, MWM_W. In the limit in which this symmetry is valid it avoids the tree level mixing of the ZZ boson of the Standard Model with the extra ZZ^\prime boson. We have verified that the oblique TT parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3)L+RSU(3)_{L+R} custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, being the see-saw mechanism mandatory to obtain light active neutrinos. Moreover, the approximate SU(2)L+RSU(3)L+RSU(2)_{L+R}\subset SU(3)_{L+R} symmetry implies that the extra non-standard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner.Comment: 32 pages, no figure, RevTeX. Some typos correcte

    Axion Like Particles and the Inverse Seesaw Mechanism

    Get PDF
    Light pseudoscalars known as axion like particles (ALPs) may be behind physical phenomena like the Universe transparency to ultra-energetic photons, the soft γ\gamma-ray excess from the Coma cluster, and the 3.5 keV line. We explore the connection of these particles with the inverse seesaw (ISS) mechanism for neutrino mass generation. We propose a very restrictive setting where the scalar field hosting the ALP is also responsible for generating the ISS mass scales through its vacuum expectation value on gravity induced nonrenormalizable operators. A discrete gauge symmetry protects the theory from the appearance of overly strong gravitational effects and discrete anomaly cancellation imposes strong constraints on the order of the group. The anomalous U(1)(1) symmetry leading to the ALP is an extended lepton number and the protective discrete symmetry can be always chosen as a subgroup of a combination of the lepton number and the baryon number.Comment: 29pp. v4: published version with erratum. Conclusions unchange

    A procedure for testing the quality of LANDSAT atmospheric correction algorithms

    Get PDF
    There are two basic methods for testing the quality of an algorithm to minimize atmospheric effects on LANDSAT imagery: (1) test the results a posteriori, using ground truth or control points; (2) use a method based on image data plus estimation of additional ground and/or atmospheric parameters. A procedure based on the second method is described. In order to select the parameters, initially the image contrast is examined for a series of parameter combinations. The contrast improves for better corrections. In addition the correlation coefficient between two subimages, taken at different times, of the same scene is used for parameter's selection. The regions to be correlated should not have changed considerably in time. A few examples using this proposed procedure are presented

    Bounds on the Simplest Little Higgs Model Mass Spectrum Through Z Leptonic Decay

    Full text link
    We derive the leptonic neutral current in the simplest little Higgs model and compute the contribution of the model to the decay width Ze+eZ \to e^+e^-. Using the precision electroweak data we obtain a strong lower bound f5.6f\geq 5.6 TeV at 95% C.L. on the characteristic energy scale of the model. It results in a lower bound for the new gauge bosons W±W^{\prime\pm} and ZZ^{\prime} as being MW±2.6M_{W^{\prime\pm}}\geq 2.6 TeV and MZ3.1M_{Z^{\prime}}\geq 3.1 TeV, respectively. We also present the allowed values of the k=f1/f2k=f_1/f_2 which is the parameter relating the two vacuum expectation values of the scalar triplets in the model, and the μ\mu parameter of a quadratic term, involving the triplets, necessary to provide an acceptable mass range for the standard Higgs boson.Comment: New references added, 13 pages. Version to be publishe

    Generation of higher derivatives operators and electromagnetic wave propagation in a Lorentz-violation scenario

    Full text link
    We study the perturbative generation of higher-derivative operators as corrections to the photon effective action, which are originated from a Lorentz violation background. Such corrections are obtained, at one-loop order, through the proper-time method, using the zeta function regularization. We focus over the lowest order corrections and investigate their influence in the propagation of electromagnetic waves through the vacuum, in the presence of a strong, constant magnetic field. This is a setting of experimental relevance, since it bases active efforts to measure non linear electromagnetic effects. After surprising cancellations of Lorentz violating corrections to the Maxwell's equation, we show that no effects of the kind of Lorentz violation we consider can be detected in such a context.Comment: v2: 13 pages, no figures, section IV considerably rewritten, main results unchanged and are now obtained in a simpler way. To appear in PL
    corecore