8,376 research outputs found

    Exact Renormalization of Massless QED2

    Full text link
    We perform the exact renormalization of two-dimensional massless gauge theories. Using these exact results we discuss the cluster property and confinement in both the anomalous and chiral Schwinger models.Comment: 14 pages, no figures, introduction and conclusions modifie

    Relações filogenéticas de Stenosmicra Boucek & Delvare (Hymenoptera; Chalcididae)

    Get PDF
    Stenosmicra Bouček & Delvare, 1992 pertence à Chalcidini e reúne as espécies: S. exilis Bouček & Delvare, 1992 e S. tenuis Bouček, 1992. As espécies do gênero são caracterizadas, principalmente, pelo corpo alongado e estreito, e o prepecto expandido. Ao longo de anos, observou-se que estas características também estavam presentes no grupo de espécies elongata, pertencente ao gênero Conura, sugerindo uma relação próxima destes dois táxons. Este fato, contraria proposta anterior que sugere que Stenosmicra seja grupo irmão do clado Melanosmicra + Chalcis. Com base nisto, apresenta-se aqui uma reavaliação das relações das espécies de Stenosmicra com os outros Chalcidini à luz da do princípio da parcimônia e de novas tecnologias de busca. Foram utilizadas 36 UTOs e 50 caracteres morfológicos. Através de análise de parcimônia, testando valores de K de 1 a 10 foi recuperada como topologia mais parcimoniosa a que utilizou o valor de K=6. Stenosmicra foi recuperado como monofilético e irmão de um clado que reuni o grupo elongata (monofilético) e mais dois grupos de espécies, o que torna Conura parafilético. Dessa forma, são apresentadas sinapomorfias (algumas inéditas) que suportam os clados, considerações sobre os resultados obtidos e suas implicações na classificação dos Chalcidini são apresentadas

    Tuning the metamagnetism of an antiferromagnetic metal

    Get PDF
    We describe a `disordered local moment' (DLM) first-principles electronic structure theory which demonstrates that tricritical metamagnetism can arise in an antiferromagnetic metal due to the dependence of local moment interactions on the magnetisation state. Itinerant electrons can therefore play a defining role in metamagnetism in the absence of large magnetic anisotropy. Our model is used to accurately predict the temperature dependence of the metamagnetic critical fields in CoMnSi-based alloys, explaining the sensitivity of metamagnetism to Mn-Mn separations and compositional variations found previously. We thus provide a finite-temperature framework for modelling and predicting new metamagnets of interest in applications such as magnetic cooling

    Nucleation of cracks in a brittle sheet

    Full text link
    We use molecular dynamics to study the nucleation of cracks in a two dimensional material without pre-existing cracks. We study models with zero and non-zero shear modulus. In both situations the time required for crack formation obeys an Arrhenius law, from which the energy barrier and pre-factor are extracted for different system sizes. For large systems, the characteristic time of rupture is found to decrease with system size, in agreement with classical Weibull theory. In the case of zero shear modulus, the energy opposing rupture is identified with the breakage of a single atomic layer. In the case of non-zero shear modulus, thermally activated fracture can only be studied within a reasonable time at very high strains. In this case the energy barrier involves the stretching of bonds within several layers, accounting for a much higher barrier compared to the zero shear modulus case. This barrier is understood within adiabatic simulations

    Scaling laws for the elastic scattering amplitude

    Full text link
    The partial differential equation for the imaginary part of the elastic scattering amplitude is derived. It is solved in the black disk limit. The asymptotical scaling behavior of the amplitude coinciding with the geometrical scaling is proved. Its extension to preasymptotical region and modifications of scaling laws for the differential cross section are considered.Comment: 6 p. arXiv admin note: substantial text overlap with arXiv:1206.547

    On the Renormalizability of Theories with Gauge Anomalies

    Full text link
    We consider the detailed renormalization of two (1+1)-dimensional gauge theories which are quantized without preserving gauge invariance: the chiral and the "anomalous" Schwinger models. By regularizing the non-perturbative divergences that appear in fermionic Green's functions of both models, we show that the "tree level" photon propagator is ill-defined, thus forcing one to use the complete photon propagator in the loop expansion of these functions. We perform the renormalization of these divergences in both models to one loop level, defining it in a consistent and semi-perturbative sense that we propose in this paper.Comment: Final version, new title and abstract, introduction and conclusion rewritten, detailed semiperturbative discussion included, references added; to appear in International Journal of Modern Physics

    Kirigami Actuators

    Full text link
    Thin elastic sheets bend easily and, if they are patterned with cuts, can deform in sophisticated ways. Here we show that carefully tuning the location and arrangement of cuts within thin sheets enables the design of mechanical actuators that scale down to atomically-thin 2D materials. We first show that by understanding the mechanics of a single, non-propagating crack in a sheet we can generate four fundamental forms of linear actuation: roll, pitch, yaw, and lift. Our analytical model shows that these deformations are only weakly dependent on thickness, which we confirm with experiments at centimeter scale objects and molecular dynamics simulations of graphene and MoS2_{2} nanoscale sheets. We show how the interactions between non-propagating cracks can enable either lift or rotation, and we use a combination of experiments, theory, continuum computational analysis, and molecular dynamics simulations to provide mechanistic insights into the geometric and topological design of kirigami actuators.Comment: Soft Matter, 201

    The Little Hierarchy in Universal Extra Dimensions

    Get PDF
    In the standard model in universal extra dimensions (UED) the mass of the Higgs field is driven to the cutoff of the higher-dimensional theory. This re-introduces a small hierarchy since the compactification scale 1/R should not be smaller than the weak scale. In this paper we study possible solutions to this problem by considering five-dimensional theories where the Higgs field potential vanishes at tree level due to a global symmetry. We consider two avenues: a Little Higgs model and a Twin Higgs model. An obstacle for the embedding of these four-dimensional models in five dimensions is that their logarithmic sensitivity to the cutoff will result in linear divergences in the higher dimensional theory. We show that, despite the increased cutoff sensitivity of higher dimensional theories, it is possible to control the Higgs mass in these two scenarios. For the Little Higgs model studied, the phenomenology will be significantly different from the case of the standard model in UED. This is due to the fact that the compactification scale approximately coincides with the scale where the masses of the new states appear. For the case of the Twin Higgs model, the compactification scale may be considerably lower than the scale where the new states appear. If it is as low as allowed by current limits, it would be possible to experimentally observe the standard model Kaluza-Klein states as well as a new heavy quark. On the other hand, if the compactification scale is higher, then the phenomenology at colliders would coincide with the one for the standard model in UED.Comment: 25 pages, 2 figure
    corecore