8 research outputs found

    Diurnal Oscillation of Amygdala Clock Gene Expression and Loss of Synchrony in a Mouse Model of Depression

    No full text
    Background: Disturbances in circadian rhythm-related physiological and behavioral processes are frequently observed in depressed patients and several clock genes have been identified as risk factors for the development of mood disorders. However, the particular involvement of the circadian system in the pathophysiology of depression and its molecular regulatory interface is incompletely understood. Methods: A naturalistic animal model of depression based upon exposure to chronic mild stress was used to induce anhedonic behavior in mice. Micro-punch dissection was used to isolate basolateral amygdala tissue from anhedonic mice followed by quantitative real-time PCRbased analysis of gene expression. Results: Here we demonstrate that chronic mild stress-induced anhedonic behavior is associated with disturbed diurnal oscillation of the expression of Clock, Cry2, Per1, Per3, Id2, Rev-erb, Ror- and Ror- in the mouse basolateral amygdala. Clock gene desynchronization was accompanied by disruption of the diurnal expressional pattern of vascular endothelial growth factor A expression in the basolateral amygdala of anhedonic mice, also reflected in alterations of circulating vascular endothelial growth factor A levels. Conclusion: We propose that aberrant control of diurnal rhythmicity related to depression may indeed directly result from the illness itself and establish an animal model for the further exploration of the molecular mechanisms mediating the involvement of the circadian system in the pathophysiology of mood disorders.(VLID)458050

    Scientific Reports / STAT3 controls IL6-dependent regulation of serotonin transporter function and depression-like behavior

    No full text
    Experimental evidence suggests a role for the immune system in the pathophysiology of depression. A specific involvement of the proinflammatory cytokine interleukin 6 (IL6) in both, patients suffering from the disease and pertinent animal models, has been proposed. However, it is not clear how IL6 impinges on neurotransmission and thus contributes to depression. Here we tested the hypothesis that IL6-induced modulation of serotonergic neurotransmission through the STAT3 signaling pathway contributes to the role of IL6 in depression. Addition of IL6 to JAR cells, endogenously expressing SERT, reduced SERT activity and downregulated SERT mRNA and protein levels. Similarly, SERT expression was reduced upon IL6 treatment in the mouse hippocampus. Conversely, hippocampal tissue of IL6-KO mice contained elevated levels of SERT and IL6-KO mice displayed a reduction in depression-like behavior and blunted response to acute antidepressant treatment. STAT3 IL6-dependently associated with the SERT promoter and inhibition of STAT3 blocked the effect of IL6 in-vitro and modulated depression-like behavior in-vivo. These observations demonstrate that IL6 directly controls SERT levels and consequently serotonin reuptake and identify STAT3-dependent regulation of SERT as conceivable neurobiological substrate for the involvement of IL6 in depression.(VLID)491089
    corecore