13 research outputs found

    Unaprijeđeni algoritam za praćenje putanje na neravnoj cesti

    Get PDF
    The path planning problem is an important problem in the research area of robot, games and group animation. This paper shows a 2.5-dimensional terrain grid which can reduce the amount of computation. By applying the fuzzy logic theory, the terrain trafficability of the rugged road can be evaluated based on different gradient, roughness, elevation difference; the trafficability factor can be achieved and applied to the heuristic function. The improved algorithm can solve the symmetry problem of path planning on uneven surfaces, reduce the search space.Problem planirana putanje je važan problem u istraživačkom području robotike, igara i grupne animacije. U ovom radu teren je predstavljen 2.5-dimenzionalnom mrežom što može smanjiti vrijeme računanja. Korištenjem teorije neizrazite logike prohodnost neravne ceste može se procijeniti na osnovu razlike gradijenata, nagiba i grbavosti, te se može odrediti faktor prohodnosti koji je primijenjiv na heurističku funkciju. Unaprijeđeni algoritam može riješiti problem simetrije kod planiranja putanje na neravnim površinama i smanjiti prostor pretraživanja

    Identification of drug-resistant phenotypes and resistance genes in Enterococcus faecalis isolates from animal feces originating in Xinjiang, People’s Republic of China

    No full text
    This study examined the presence and the antibiotic resistance patterns of Enterococcus faecalis isolated from the feces of 285 animals. Polymerase chain reaction tests verified the presence of E. faecalis from 49 pigs, 20 cows, 174 sheep, 17 horses, 21 chickens, and four dung beetles. Bacterial strains from different animals showed differences in susceptibility and resistance to the tested antimicrobials. The isolates exhibited resistance to ampicillin (6.32%), ciprofloxacin (40.00%), nitrofurantoin (1.40%), erythromycin (54.04%), streptomycin (82.11%), tetracycline (45.26%), amoxicillin (64.91%), penicillin (92.28%), and vancomycin (0.35%). The resistant strains also possessed varying complements of resistance genes including tem (77.89%), tetM (33.68%), gyrA (37.54%), parC (34.74%), aph(3′)-III (22.46%), aac(6′)/aph2″ (10.88%), and ant(6′)-I (8.42%). Genes for vancomycin resistance (vanB and vanC) and erythromycin resistance (mefA) were not detected. These results indicate high levels of antibiotic resistance among the isolates, although no positive correlation was observed between resistance genes and antibiotic resistance spectrum.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Antioxidant Effects of Roasted Licorice in a Zebrafish Model and Its Mechanisms

    No full text
    Licorice (Gan-Cao, licorice) is a natural antioxidant and roasted licorice is the most common processing specification used in traditional Chinese medicine prescriptions. Traditional Chinese medicine theory deems that the honey-roasting process can promote the efficacy of licorice, including tonifying the spleen and augmenting “Qi” (energy). The antioxidant activity and mechanisms underlying roasted licorice have not yet been reported. In this study, we found that roasted licorice could relieve the oxidative stress injury induced by metronidazole (MTZ) and could restrain the production of excessive reactive oxygen species (ROS) induced by 2,2′-azobis (2-methylpropionamidine) dihydrochloride (AAPH) in a zebrafish model. It was further found that roasted licorice could exert its oxidative activity by upregulating the expression of key genes such as heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), glutamate–cysteine ligase modifier subunit (GCLM), and glutamate–cysteine ligase catalytic subunit (GCLC) in the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway both in vivo and in vitro. Furthermore, consistent results were obtained showing that rat serum containing roasted licorice was estimated to reduce cell apoptosis induced by H2O2. Then, the UHPLC-Q-Exactive Orbitrap MS analysis results elucidated the chemical composition of rat plasma containing roasted licorice extracts, including ten prototype chemical components and five metabolic components. Among them, six compounds were found to have binding activity with Kelch-like ECH-associated protein 1 (KEAP1), which plays a crucial role in the transcriptional activity of NRF2, using a molecular docking simulation. The results also showed that liquiritigenin had the strongest binding ability with KEAP1. Immunofluorescence further confirmed that liquiritigenin could induce the nuclear translocation of NRF2. In summary, this study provides a better understanding of the antioxidant effect and mechanisms of roasted licorice, and lays a theoretical foundation for the development of a potential antioxidant for use in clinical practice

    Selective and Scalable CO<sub>2</sub> Electrolysis Enabled by Conductive Zinc Ion-Implanted Zeolite-Supported Cadmium Oxide Nanoclusters

    No full text
    Catalyst supports play an essential role in catalytic reactions, hinting at pronounced metal–support effects. Zeolites are a propitious support in heterogeneous catalysts, while their use in the electrocatalytic CO2 reduction reaction has been limited as yet because of their electrically insulating nature and serious competing hydrogen evolution reaction (HER). Enlightened by theoretical prediction, herein, we implant zinc ions into the structural skeleton of a zeolite Y to strategically tailor a favorable electrocatalytic platform with remarkably enhanced electronic conduction and strong HER inhibition capability, which incorporates ultrafine cadmium oxide nanoclusters as guest species into the supercages of the tailored 12-ring window framework. The metal d-bandwidth tuning of cadmium by skeletal zinc steers the extent of substrate–molecule orbital mixing, enhancing the stabilization of the key intermediate *COOH while weakening the CO poisoning effect. Furthermore, the strong cadmium–zinc interplay causes a considerable thermodynamic barrier for water dissociation in the conversion of H+ to *H, potently suppressing the competing HER. Therefore, we achieve an industrial-level partial current density of 335 mA cm–2 and remarkable Faradaic efficiency of 97.1% for CO production and stably maintain Faradaic efficiency above 90% at the industrially relevant current density for over 120 h. This work provides a proof of concept of tailored conductive zeolite as a favorable electrocatalytic support for industrial-level CO2 electrolysis and will significantly enhance the adaptability of conductive zeolite-based electrocatalysts in a variety of electrocatalysis and energy conversion applications

    Regulation of pulmonary fibrosis by chemokine receptor CXCR3

    No full text
    CXC chemokine receptor 3 (CXCR3) is the receptor for the IFN-γ–inducible C-X-C chemokines MIG/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. CXCR3 is expressed on activated immune cells and proliferating endothelial cells. The role of CXCR3 in fibroproliferation has not been investigated. We examined the role of CXCR3 in pulmonary injury and repair in vivo. CXCR3-deficient mice demonstrated increased mortality with progressive interstitial fibrosis relative to WT mice. Increased fibrosis occurred without increased inflammatory cell recruitment. CXCR3 deficiency resulted in both a reduced early burst of IFN-γ production and decreased expression of CXCL10 after lung injury. We identified a relative deficiency in lung NK cells in the unchallenged CXCR3-deficient lung and demonstrated production of IFN-γ by WT lung NK cells in vivo following lung injury. The fibrotic phenotype in the CXCR3-deficient mice was significantly reversed following administration of exogenous IFN-γ or restoration of endogenous IFN-γ production by adoptive transfer of WT lymph node and spleen cells. Finally, pretreatment of WT mice with IFN-γ–neutralizing Ab’s enhanced fibrosis following lung injury. These data demonstrate a nonredundant role for CXCR3 in limiting tissue fibroproliferation and suggest that this effect may be mediated, in part, by the innate production of IFN-γ following lung injury
    corecore