377 research outputs found

    Early window of diabetes determinism in NOD mice, dependent on the complement receptor CRIg, identified by noninvasive imaging

    Get PDF
    All juvenile NOD mice exhibit insulitis, but there is substantial variation in their progression to diabetes. We demonstrate that a patient-validated magnetic-resonance-imaging (MRI) strategy to non-invasively visualize local effects of pancreatic-islet inflammation can predict diabetes onset in NOD mice. MRI signals acquired during a narrow early time-window allowed pre-sorting into disease-progressors and -nonprogressors and an estimate of time-to-diabetes. We exploited this capability to identify novel elements correlated with disease protection, including CRIg (complement receptor of the immunoglobulin superfamily), which marked a subset of macrophages associated with diabetes resistance. Administration of CRIg-Fc depressed MRI signals and diabetes incidence. In addition to identifying regulators of disease progression, this study shows that diabetes is set at an early age in NOD mice

    Thymic negative selection is functional in NOD mice

    Get PDF
    Based on analyses of multiple TCR transgenic (tg) models, the emergence of pathogenic T cells in diabetes-prone NOD mice has been ascribed to a failure to censure autoreactive clones in the thymus. In contrast, using isolated and preselected thymocytes, we show that nonobese diabetic (NOD) genetic variation impairs neither clonal deletion nor downstream transcriptional programs. However, we find that NOD genetic variation influences αβ/γδ-lineage decisions promoted by early expression of tg αβ-TCRs at the double-negative (DN) stage. In B6 and other genetic backgrounds, tg αβ-TCRs behave like γδ-TCRs and commit a large fraction of DNs toward the γδ-lineage, thereby decreasing the size of the double-positive (DP) pool, which is efficiently positively and negatively selected. In NOD DNs, αβ-TCR signalosomes instead behave like pre-TCRs, resulting in high numbers of DPs competing for limited selection niches, and poor positive and negative selection. Once niche effects are neutralized in mixed bone marrow chimeras, positive and negative selection are equally efficient on B6 and NOD backgrounds. Biochemical analysis revealed a selective defect in the activation of Erk1/2 downstream of NOD αβ-TCR signalosomes. Therefore, NOD genetic variation influences αβ/γδ-lineage decisions when the αβ-TCR heterodimer is prematurely expressed, but not the process of negative selection

    An Assessment of Primary Care Physician Shortages in Mississippi

    Get PDF
    According to the Department of Health and Human Services, there are Health Professional Shortage Areas in all states and territories of the United States.\u27 Since fewer students graduating from medical school are choosing primary care, it is imperative that future graduates in the field know which regions are in greatest need of primary care physicians. In a joint effort with the Mississippi Rural Physicians Scholarship Program and the Sally McDonnell Barksdale Honors College, this thesis used data obtained from the Mississippi Department of Health, the United States Census Bureau, the Mississippi State Medical Association, and the Mississippi State Board of Medical Licensure to research primary care physician shortages per specialty in each of the 82 Mississippi counties and to calculate each county’s relative need for primary care physicians. For the purposes of this thesis, the primary care specialties considered were family/general practice, internal medicine, obstetrics and gynecology, and pediatrics. Both the primary care physician to population rates and average and median physician ages per county and for each specialty were used to calculate indices of care that compare each county’s relative need for primary care physicians. Results showed that for overall primary care physicians and for those in family practice, relatively more counties had lower scores on their indices of care, while for those in obstetrics and gynecology, over half of the counties received the worst score, indicating that there were no physicians practicing obstetrics and gynecology in the county. These results are primarily intended to serve as a tool by which the Mississippi Rural Physicians Scholarship Program may direct its graduates to areas in need of their services

    Transcriptomes of the B and T lineages compared by multiplatform microarray profiling

    Get PDF
    T and B lymphocytes are developmentally and functionally related cells of the immune system, representing the two major branches of adaptive immunity. Although originating from a common precursor, they play very different roles: T cells contribute to and drive cell-mediated immunity, whereas B cells secrete Abs. Because of their functional importance and well-characterized differentiation pathways, T and B lymphocytes are ideal cell types with which to understand how functional differences are encoded at the transcriptional level. Although there has been a great deal of interest in defining regulatory factors that distinguish T and B cells, a truly genomewide view of the transcriptional differences between these two cells types has not yet been taken. To obtain a more global perspective of the transcriptional differences underlying T and B cells, we exploited the statistical power of combinatorial profiling on different microarray platforms, and the breadth of the Immunological Genome Project gene expression database, to generate robust differential signatures. We find that differential expression in T and B cells is pervasive, with the majority of transcripts showing statistically significant differences. These distinguishing characteristics are acquired gradually, through all stages of B and T differentiation. In contrast, very few T versus B signature genes are uniquely expressed in these lineages, but are shared throughout immune cells.National Institute of Allergy and Infectious Diseases (U.S.) (National Institutes of Health (R24 AI072073

    PPARγ is a Major Driver of the Accumulation and Phenotype of Adipose-Tissue TregT_{reg} Cells

    Get PDF
    Obesity and type-2 diabetes have increased markedly over the past few decades, in parallel. One of the major links between these two disorders is chronic, low-grade inflammation. Prolonged nutrient excess promotes the accumulation and activation of leukocytes in visceral adipose tissue (VAT) and ultimately other tissues, leading to metabolic abnormalities such as insulin resistance, type-2 diabetes and fatty-liver disease. Although invasion of VAT by pro-inflammatory macrophages is considered to be a key event driving adipose-tissue inflammation and insulin resistance, little is known about the roles of other immune system cell types in these processes. A unique population of VAT-resident regulatory T (Treg)(T_{reg}) cells was recently implicated in control of the inflammatory state of adipose tissue and, thereby, insulin sensitivity. Here we identify peroxisome proliferator-activated receptor (PPAR)-γ, the ‘master regulator’ of adipocyte differentiation, as a crucial molecular orchestrator of VAT TregT_{reg} cell accumulation, phenotype and function. Unexpectedly, PPAR-γ expression by VAT TregT_{reg} cells was necessary for complete restoration of insulin sensitivity in obese mice by the thiazolidinedione drug pioglitazone. These findings suggest a previously unknown cellular mechanism for this important class of thiazolidinedione drugs, and provide proof-of-principle that discrete populations of TregT_{reg} cells with unique functions can be precisely targeted to therapeutic ends

    Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells

    Get PDF
    Epigenetic modifiers are an emerging class of anti-tumor drugs, potent in multiple cancer contexts. Their effect on spontaneously developing autoimmune diseases has been little explored. We report that a short treatment with I-BET151, a small-molecule inhibitor of a family of bromodomain-containing transcriptional regulators, irreversibly suppressed development of type-1 diabetes in NOD mice. The inhibitor could prevent or clear insulitis, but had minimal influence on the transcriptomes of infiltrating and circulating T cells. Rather, it induced pancreatic macrophages to adopt an anti-inflammatory phenotype, impacting the NF-κB pathway in particular. I-BET151 also elicited regeneration of islet β-cells, inducing proliferation and expression of genes encoding transcription factors key to β-cell differentiation/function. The effect on β cells did not require T cell infiltration of the islets. Thus, treatment with I-BET151 achieves a ‘combination therapy’ currently advocated by many diabetes investigators, operating by a novel mechanism that coincidentally dampens islet inflammation and enhances β-cell regeneration. DOI: http://dx.doi.org/10.7554/eLife.04631.00
    corecore