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Abstract
T and B lymphocytes are developmentally and functionally related cells of the immune system,
representing the two major branches of adaptive immunity. Although originating from a common
precursor, they play very different roles: T cells contribute to and drive cell-mediated immunity,
while B cells secrete antibodies. Because of their functional importance and well-characterized
differentiation pathways, T and B lymphocytes are ideal cell-types with which to understand how
functional differences are encoded at the transcriptional level. Although there has been a great deal
of interest in defining regulatory factors that distinguish T and B cells, a truly genome-wide view
of the transcriptional differences between these two cells types has not yet been taken. To obtain a
more global perspective of the transcriptional differences underlying T and B cells, we exploited
the statistical power of combinatorial profiling on different microarray platforms, and the breadth
of the Immunological Genome Project (ImmGen) gene-expression database, to generate robust
differential signatures. We find that differential expression in T and B cells is pervasive, the
majority of transcripts showing statistically significant differences. These distinguishing
characteristics are acquired gradually, though all stages of B and T differentiation. On the other
hand, very few T vs. B signature genes are uniquely expressed in these lineages, but are shared
throughout immune cells.

INTRODUCTION
T and B lymphocytes are closely related cell lineages of the immune system, having the
unique ability to somatically rearrange gene segments encoding receptors for antigen, the
key molecules of the adaptive immune system. Both lineages are thought to arise from the
same bone marrow precursors, the nature of which is somewhat debated at present. They
complete remarkably parallel stages of differentiation and selection before reaching
morphologically similar mature states, as “naïve” lymphocytes resting in secondary
lymphoid organs, from which activation by cognate antigen will provoke their terminal
differentiation to effector or memory states.

Although T and B lymphocytes broadly share a role in the adaptive immune system, their
functions within this responsive structure are entirely different: T cells participate primarily
in cell-mediated immunity and in orchestrating cellular responses, while B cell production of
antibodies is the hallmark of humoral immunity. As these functional differences are usually
assumed to be underpinned by differences in the basic cell biology of these lymphocytes,
there has been some interest in determining what, beyond the antigen receptors and their
ancillary factors, distinguishes B and T lymphocytes. In particular, how differently B and T
lymphocytes utilize the blueprint of genes encoded in the genome.
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A notable early study used cDNA subtractive hybridization, where cDNA from T and B
cells were isolated and subjected to exhaustive subtraction, to estimate that T and B cells
differ by only 2% of their mRNA (1,2), among which TCR-encoding genes were eventually
isolated. Since then, several key regulators have been found, through knockout studies, to be
necessary for the differentiation of either the T or B lineages: Pax5, Ebf1 or Sfpi1 (PU.1) for
B cells, Notch1 and Gata3 for T cells (3-7). While identifying such lineage-specification
factors is of course essential, viewing the differences between lineages solely through the
lens of a few control factors necessarily overlooks the complex transcriptional programs
present in any given cell. The development of microarray technologies, and the continued
improvements in microarray platforms and their annotations, have allowed a perspective on
the transcriptome that is global and also more quantitatively nuanced. A few early studies
used this approach to compare T and B lymphocytes (8-11), identifying sets of genes that
are differentially expressed in B and T cells, as well as more generally shared sets; as might
be expected, transcripts that varied during T or B lymphocyte differentiation showed more
inter-lineage differential than invariant housekeeping genes (8).

While generating such data for transcripts that are strongly expressed and/or clearly
differential is straightforward, there is difficulty in arriving at more general conclusions for
the entire transcriptome in such comparisons. These problems lie in the confidence one can
have in calls that a transcript is present or absent in a given dataset, given the difficulty in
distinguishing true signals from noise due to false-negatives (non-performing features on a
microarray, sub-threshold detection) or false-positives (cross-hybridizing microarray
features), both of which are poorly controlled on any one microarray (12,13). In addition,
the use of arbitrary thresholds to define expression differentials tends to create overly
simplistic distinctions. In the present study, we have attempted to robustly define the
transcriptome differences underlying T and B lymphocytes by exploiting the unique datasets
generated in the pilot phases of the Immunological Genome Project (ImmGen)3. ImmGen is
a collaborative group of immunology and computational biology laboratories aiming to
decipher, on a broad scale, the patterns of gene expression and genetic regulatory networks
of the immune system of the mouse (14). We used the cross-verifying power of expression
profiling on independent microarray platforms, as well as the breadth of gene-expression
datasets available in the ImmGen database, to robustly explore what distinguishes T and B
lymphocytes at the transcriptional level, and to analyze when these distinctions are acquired
during T and B lineage differentiation.

MATERIALS AND METHODS
Mice

6-week old C57BL/6J mice were bred in specific pathogen-free conditions, under
Institutional Animal Care and Use Committee protocol (protocol 02954).

Cell Sorting and Flow Cytometry
All cells were purified using the sorting protocol and mAbs listed on www.ImmGen.org.

Microarray Analysis
For multi-platform microarrray profiling, RNA was prepared from sorted CD4+ T cell and
CD19+ B cell populations from C57BL/6J mice using Trizol reagent as described (15). RNA
was amplified and hybridized on the Affymetrix Mouse Gene 1.0 ST, Agilent Mouse GE 1-
Color, Illumina Mouse-6 v1.1 BeadChip, and Nimblegen Mouse X12 arrays according to the

3List of abbreviations used in this paper: FC, Fold Change.
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procedures specific to each platform. Raw data were pre-processed using software
compatible for each platform, and all normalized using the RMA algorithm. Thresholds on
expression values above which a gene was considered expressed were derived for each
platform by one of two distribution-based approaches. For platforms with well-defined
negative control probesets (Illumina Mouse-6 and Nimblegen X12), the threshold for
greater-than-chance expression was defined as expression values greater than or equal to the
95% quantile of expression values in the negative controls. The “negative controls” for
Agilent and Affymetrix arrays, however, exhibited notably different behavior in relation to
non-control probes (likely due to the inclusion of intronic probes with some degree of
expression), and thus did not allow for the same type of control-based analysis as Illumina
and Nimblegen. For these samples, a Gaussian Mixture Model (GMM) was used to arrive at
thresholds consistent with a controls-based approach. GMM is an Expectation-Maximization
algorithm, the aim of which is to optimize the likelihood that a set of data points is generated
by a mixture of Gaussian distributions. In this case, the MATLAB software “fit” function
with parameter “gauss3” was used to the model the observed chip-wide expression
distribution profile of all non-control probe-sets, such that each Gaussian component of the
mixture corresponded to a different source of signal (i.e. background and genuine
expression). Thresholds for greater-than-chance expression were then empirically defined as
the value above which there is an equal probability that the signal is part of either
distribution. This setting was validated on the Illumina and Nimblegen arrays by a good fit
with thresholds derived from true negative controls. Specifically, the average percentage of
genes in the 4-platform common genome expressed above the GMM-derived thresholds for
Affymetrix and Agilent were 50.5% and 42.7%% respectively, which is concordant with the
controls-derived thresholds used for Nimblegen and Illumina (47.7%-46.4%). Conversely,
the equivalent controls-derived thresholds for Affymetrix and Agilent were highly
discordant, with averages of 15.5% and 84.8% respectively (data not shown).

For data analysis using ImmGen datasets, raw data for all populations were normalized
using the RMA algorithm (16) implemented in the “Expression File Creator” module in the
GenePattern suite (17). Differential signatures were visualized using the “Multiplot”
module. Signature transcripts were clustered using the “Hierarchical Clustering” module,
using Pearson's correlation as a metric and visualized using the “Hierarchical Clustering
Viewer” heatmap module.

To display the expression of transcripts during differentiation, a modified K-means
algorithm was used to cluster the B and T cell signatures in order to represent the
developmental activation of their respective genes. Unlike the traditional K-means approach
of clustering observations around randomly determined centroids, this analysis used
predefined, theoretical centroids, each characterized by a stepwise expression profile
corresponding to successive stages of activation. Consequently, n-1 centroids were used to
cluster a signature comprised of n stages of development. Pearson's correlation coefficient
was used as the distance metric. This results in the clustering of probesets around the single-
stage activation exemplar to which it is most correlated.

The “Population Plots” position cell populations in a two-dimensional frame of reference,
created using the expression values of sets of genes that most distinguish two reference
populations. The X and Y axes (“B-ness” and ”T-ness”, respectively, in Fig. 4) were defined
by expression values for the signature genes over-expressed in one reference population
relative to the other: expression values of these genes were normalized relative to the
reference populations (scaled to 0 and 1, where 0 is the expression value in the “low”
population and 1 the value in the “high” population); scaled values for all signature genes
were then averaged to yield the x and y coordinates of the populations tested.

Painter et al. Page 4

J Immunol. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



For cluster analysis, expression values were normalized to the mean expression for each
gene, and a partition clustering algorithm (pam, S-Plus) was applied to the expression values
in the T cell differentiation series. This cluster composition was then applied to expression
values within nonT/nonB datasets within ImmGen (precursors, myeloid, NK cells).

All datasets have been deposited at NCBI/GEO under accession # GSE15907
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15907).

RESULTS
Defining gene expression in T and B cells from the four-platform data

As part of the evaluation process to select a microarray platform most compatible with the
ImmGen project, bulk CD4+ T cells and CD19+ B cells were sorted from spleen suspensions
of 6 week-old C57Bl/6J mice, for RNA preparations that were used to probe microarrays
from four different commercial sources (Affymetrix Mouse Gene 1.0 ST array, Agilent
Mouse GE 1-Color Array, Illumina Mouse-6 v1.1 Expression Beadchip Array and
Nimblegen Mouse X12 array). Three replicate datasets were generated for each cell type and
each array (except one technical failure for Agilent), and the data were used for a
comparative assessment of reproducibility and noise, of importance in the context of the
ImmGen program (data not shown). Relevant to the present project, we used the combined
datasets to address the depth and variation of gene expression in B and T lymphocytes,
under the assumption that comparable signals obtained in independent microarrays would be
highly confirmatory, particularly since the various arrays use fundamentally different
oligonucleotide probes (multiple 22mers for Affymetrix, single long nucleotides for others)
and probe/label chemistries (cDNA or cRNA). We generated a “Common Gene Table”
which included 12,299 genes represented in at least 3 out of 4 arrays (full data listed in
Table SI). We then defined, for each array, threshold expression values above which a
probe was scored as showing significant expression (at a probability of P <0.05, as detailed
in Supplementary Material; because reliable negative controls are only present on two of the
arrays, these thresholds for significant expression were based on those negative controls
when present, and on a Gaussian deconvolution of expression profiles similarly applied to
all four platforms). This analysis showed excellent agreement between the platforms: the
expression patterns in either T or B cells proved quite reproducible overall, being between
43% and 50% of the genes represented (Table IA), with only a low proportion of false-
positives (signals detected on one array but absent on all others, and thus likely to represent
spurious noise) and false-negatives (signals absent on a given array but present on at least 2
others). Combining the results from all 4 arrays, and scoring those genes found to be
expressed in at least 2 of the platforms, showed that a very similar proportion of the genome
(49.7 %) is active in both B and T cells (Table IB).

Next, we generated a robust signature of differential T vs. B expression, again harnessing
the combinatorial power of the multi-platform measurement to determine with a high degree
of confidence the differences in transcript abundance. The data in the Common Gene Table
described above were filtered for transcripts scoring positively in at least one cell-type (8411
genes) and subsequently used to generate Fold Change (FC) estimates of the T/B ratio of
expression for each of the four microarrays (calculated from the mean of the triplicate
expression values). There was, for the most part, very good concordance between the FC
values on different platforms, consistent with results from previous microarray comparison
projects (18), as illustrated for one comparison in Fig. 1A (all comparisons are shown in
Fig. S1, all data listed in Table SII). We then generated consensus FCs by averaging the
FCs measured on each microarray (the most diferential transcripts are listed in Table II, all
data in Table SII). To avoid spurious effects due to aberrant values on any one microarray
platform, an outlier elimination procedure was implemented, where the FC value from one
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platform was disregarded if it fell more than 3 standard deviations away from the mean of
the other three platforms. T vs. B differential expression ranged up to 633-fold (for an Ig-V
region), with 174/8411 transcripts showing a differential of 20-fold or greater, and
1364/8411 a differential of 2-fold or greater.

We estimated the significance of these aggregate FCs by a data randomization procedure:
triplicate expression values for CD4+ T cells and CD19+ B cells were scrambled for each
gene and each platform, and the aggregate fold change was recalculated from this
randomized data as before (again applying the outlier elimination procedure). The procedure
was repeated 30,000 times, counting the number of times the mock FC value for a given
gene was equal or greater to that observed, yielding an estimate of the probability that the
observed FC could be due to chance. As shown in Fig. 1B, most of the changes were highly
significant. The range of fold change values that reached significance at p<0.05 was
estimated from the FC vs. p-value scatter plot with a locally smoothed regression (loess;
dark line on Fig. 1B). Significance was observed at very low FC values (> 1.11 or <0.86),
involving 5671 of the 8411 commonly expressed genes analyzed. From a technical
standpoint, these data confirm the notion that combinatorial microarray profiling can
reliably report on minute differences in expression (19). Overall, these data indicate that the
difference between T and B lymphocytes involves a relative minority of transcripts with
large differences in expression, but that a large fraction (at least 65%) of transcripts are
subtly but significantly different in B and T cells.

Defining a T vs. B consensus signature from the broader ImmGen data
While using multi-platform microarray profiling provided a technically robust T vs. B
signature, it was limited to bulk CD4+ and CD19+ splenocytes, which do not necessarily
represent the broader range of T and B lymphocytes. Thus, to complement this signature, we
thought it worthwhile to create a T vs. B signature that would encompass a wider range of T
and B cell subpopulations, but on a single microarray platform. The datasets of mature B
and T lymphocytes available on the ImmGen database should enable the definition of
differential signatures of ‘T-ness’ and ‘B-ness’ across more subpopulations. We selected
datasets from a wide range of mature T and B cells, including CD4+ and CD8+ T cells from
the spleen, lymph node and thymus as well as B cells of different subtypes (follicular,
marginal zone, B1) from the spleen, peritoneal cavity and bone marrow. A composite T vs.
B signature was calculated by averaging across the two groups of populations, and the
significance of these Fold Change values was estimated with a simple Welsh's t-test (the
most differential transcripts are listed in Table III). As shown in Fig. 1C, many genes were
differentially expressed to a highly significant degree: 1078 genes, or 3% of the genes on the
microarray attained significance at a p-value of less than 10-5 (a conservative threshold for
corrected genome-wide significance), for FC values ranging from 1.2 to 180 (given the
increased variance, this comparison is less effective at ascribing significance to the
numerous but subtle differences described above).

We then asked whether this second signature derived from multiple B and T cell populations
within the ImmGen datasets would compare to that derived above by multi-platform
analysis of CD4+ and CD19+ splenocytes. The majority of each signature's ‘Top 100’ most
distinguishing transcripts are shared, with 64% of T cell transcripts and 52% of B cell
transcripts being present in both the multi-platform and ImmGen determinations. A ranked
plot of the T vs. B FCs in the two signatures reveals good overall matching across the
differential ranking (Fig. 1D and Table SII). Some differences between the two signatures
were observed, however, which are to be expected as the ImmGen determination used a
broad array of T and B populations while the multi-platform determination used solely
CD4+ and CD19+ splenocytes (for instance, CD4 itself ranks differently in the two
signatures).
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Are the transcripts that distinguish T and B cells specific to these lymphoid lineages?
Having generated these robust T vs. B differential signatures, we next asked whether the
transcripts that most distinguish T and B cells are unique to these cells, or whether their
expression is also shared with cells of other nonT/nonB lineages. Since, in most schemas of
hematopoietic cell differentiation, B and T lymphocytes represent terminal splits of the same
lymphocyte branch, one might expect that the transcripts that sharply distinguish them may
be uniquely expressed, solely present there and not in any other lineage (as are TCR and Ig
transcripts for instance). More generally, it is of interest to ask how many transcripts
uniquely define a particular cell-type, and how many truly T- or B-specific genes actually
exist, other than the antigen-specific receptors that defined these cells. To address this
question, we mapped the expression of the 100 genes that most strongly differentiate T or B
cells across the other immune-cell populations of the ImmGen database (DCs and
macrophages, NK cells, stem cells; γδT cells were not considered because too similar to αβT
cells). As shown in the heat-map representations of Figs. 2 and 3, T and B signature
transcripts were shared extensively with other lineages. As might be expected, T cell
transcripts were more frequently shared with NK cells, B cell transcripts with dendritic or
other myeloid cells, but this was not an absolute rule, and there were significant clusters of T
signature transcripts present in myeloid cells, and B signature transcripts in NK cells. Even
stromal cells and monocytes expressed some B or T cell genes. These data indicate that the
transcripts that most distinguish T and B lymphocytes are broadly expressed in other
immune cells, and hardly any transcripts fall into the category of being absolutely specific to
B or T lymphocytes.

We cannot completely rule out the possibility that this conclusion is influenced by spurious
lymphocyte contamination in some datasets, but this seems unlikely since, if a given dataset
were contaminated with T or B lymphocytes, one would expect that all of the T or B specific
signature would appear expressed. It is clear from Figs. 2 and 3, however, that only distinct
modules of the T or B signatures are expressed within a given population.

How are transcriptional characteristics of mature T and B cells acquired during
differentiation?

The differentiation of T and B lymphocytes is a well-characterized process marked by
distinct stages that can be tracked by the expression of various cell-surface molecules
(20,21). As such, T and B cells are attractive lineages in which to ask how the ‘identity’ of
mature cells is acquired. While a good deal is known about the timing of expression of
various transcription factors during the differentiation of these two cell-types, (3,22,23),
differentiation along the T and B lineages involves many other transcripts (24). We thus
asked how the identity of mature T and B cells, as reflected in their above-defined
distinguishing transcripts, is acquired during differentiation. In other words, when does a B
cell become a B cell, or a T cell become a T cell? To address this question, we used an
ordering algorithm to arrange T and B signature transcripts according to the stage at which
they are induced during differentiation. As shown in the heat-map representations of Figs.
4A-B, we found that signature transcripts are acquired in a sequential manner, evenly
through several steps of differentiation rather than being coordinately turned on at one
particular stage. These steps do not particularly coincide with the rearrangement of antigen-
receptor genes, but occur through the Double-Negative and Double-Positive stages for
thymic T cell precursors, and through the transitions of pro- and pre-B cells in the bone
marrow. In this respect, the full identity of T and B cells is realized gradually, and not fully
attained until maturity. This finding goes against the notion that expressing a TCR is what
makes a T cell, or a BCR a B cell.
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Conversely, we asked when signature transcripts of the ‘other’ lineage were switched off,
plotting the expression of T cell signature genes during B cell differentiation and vice-versa.
As illustrated in Figs. 4C-D, signature genes of the other lineage are turned off quite early
during differentiation, faster than the defining signature transcripts are acquired. In T cells,
most B cell signature transcripts are turned off by the Double Negative 2 stage, while in B
cells most T cell signature transcripts are turned off by the Fraction B, pro-B cell stage.

This progression of “identity acquisition” through the early lineages is reflected in the
population plots of Fig. 4E, where populations are positioned according to their expression
of T- and B-defining transcripts, and where the sequence of differentiation is clearly
delineated.

Do the same regulatory modules control signature genes in T or B lineages and in nonT/
nonB cells?

The expression signatures that distinguish T cells from B cells are acquired through distinct
steps of T or B cell differentiation, and their expression is also shared with other nonT/nonB
lineages along distinctive patterns (Figs. 2-4). It was thus of interest to ask whether the same
regulatory influences operate in both contexts, or whether transcripts obey different
regulators (or combinations thereof) during T cell differentiation and when they are active
outside the T lineage. Transcriptional regulation operates on modules of co-regulated
transcripts, which are similarly controlled by shared regulators; strongly correlated
expression throughout a panel of cell populations is an indicator of such co-regulation. By
extension, common regulatory influences (transcription factors, miRNAs) operating within
stages of T differentiation and through nonT/nonB lineages should be reflected as pair-wise
correlations that exist in both contexts. To address this question, we measured the pair-wise
correlation coefficients between transcripts of the “Top200” T signature, across both the T-
differentiation and nonT/nonB datagroups. A Pearson correlation coefficient was used as a
metric. As a reference, pair-wise correlation coefficients across the same two datagroups
were also computed for a randomly selected set of transcripts. As illustrated in Fig. 5A,
correlations between T signature transcripts within the T-differentiation datagroup showed a
skewed distribution, with a much greater proportion of high correlation coefficients than
within the reference gene-set. In contrast, this bias was far more modest within the nonT/
nonB datagroup. The different distribution of pair-wise correlations for T signature genes
within the T and nonT/nonB datagroups was compared directly in the scatter plot of Fig. 5B
(after transformation to a z-score, to normalize against the distributions of correlation
coefficients within the reference gene-set). As expected, most pairs of transcripts correlated
strongly within the T lineage, but showed little or no correlation within nonT/nonB lineages.
On the other hand, some transcript pairs did show strong correlation across both datagroups
(mapping to the top right quadrant of Fig. 5B). This distribution suggests that the majority of
co-regulatory relationships that operate within stages of T cell differentiation are not
maintained in other lineages, although a few are.

To investigate this point further, we used a simple sequential clustering algorithm to parse
the T-signature transcripts into distinct co-regulated clusters, according to their expression
patterns through T cell differentiation, and identifying the sub-clusters that did or did not
show correlation within the nonT/nonB datagroup. As shown in Fig. 5C, some sub-clusters
did show good homogeneity of expression in both datagroups (e.g. cluster #1, which
corresponded to a set of genes predominantly activated in the late stages of thymic T cell
differentiation and quite uniquely co-expressed in NK cells) while others showed no
preserved pattern of expression in nonT/nonB cells (e.g. cluster #2, also activated late in T
differentiation but which showed no consistent expression pattern outside the T lineage).
Thus, only a minority of the transcripts that characterize T lymphocytes belong to co-
regulated gene clusters that are reutilized in different cell types.
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DISCUSSION
A central goal of this work was to define, from a genome-wide perspective, the
transcriptional differences that underlie T and B lymphocytes. We used the power of
combinatorial microarray profiling as well as the breadth of cell populations available from
the ImmGen project to explore the transcripts that provide their identities to T and B
lymphocytes, in a more robust and in-depth perspective than could be provided in the
comparisons preformed previously (8-11). The results show that transcriptional differences
between B and T cells are very broad, not solely limited to a few specific markers
commonly used to distinguish them by flow cytometry. On the other hand, there are very
few transcripts uniquely specific to B and T cells, most being shared with other cell-types in
the immune system.

Combinatorial microarray profiling to describe the transcriptome of a cell has several
distinct advantages over gene-expression profiling with a single array. First, this approach
eliminates any probe biases inherent to a particular chip's design. It is likely that this “cross-
checking” resulted in our finding no difference in the overall number of genes expressed in
T cells compared with B cells, which had been suggested by Hoffman et al (8). In addition,
combining platforms avoids the false-positives and false-negatives that commonly affect
5-10% of the probe-sets on any one microarray support. Finally, combinatorial profiling
allows for discovery of differential gene expression at greater depth and confidence. Thus, in
contrast to previous studies, we estimate that at least 65% of the transcripts expressed in T
and B cells are differential, most of which at very subtle FC values. In fact, had we
compared even more datasets, it is plausible that every single gene expressed in T and B
cells would be found to be significantly different.

Although this breadth is impressive, what does it mean that such a large percentage of genes
is differentially expressed in such subtle manner, when thinking of the physiology of T and
B lymphocytes? One perspective is that these broadly distributed but subtle levels of
differential expression actually have little or no functional impact on the cell. One can
imagine that a transcriptional regulator activates or represses the expression of a particular
gene or module that specifies an important function in either T or B cells but that, in doing
so, it also creates transcriptional or post-transcriptional perturbations that ripple at low levels
throughout the genetic regulatory network of the cell. These small expression variations
across the genome would essentially be an unavoidable reverberation accompanying a larger
and more meaningful variation, but have no functional consequences in themselves, if the
key networks that regulate metabolic homeostasis or cell proliferation and survival are
sufficiently robust in the context of such variation. There would thus be no need to guard
against such changes. A similar argument has been made for the impact of microRNAs, each
of which can have mild but widespread effects, but with perhaps only a few truly
meaningful and evolutionarily selected targets. On the other hand, these variations between
B and T cells are so pervasive that it is difficult to believe that they are not meaningful in
some way. In addition, microarrays tend to compress and under-represent differences in
transcript abundance, relative to quantitative PCR. Differences of 1.2-1.3 fold by microarray
are often closer to 2-fold when measured by real-time PCR. Such differences may thus be in
a range that influences many genetic or molecular systems (e.g. copy-number-dependence in
heterozygous mutations, metabolic regulation, etc). Of course, testing the significance of
many minor variations is not experimentally tractable today.

We also found that the vast majority of these T/B differential transcripts are not specific to
either of these lineages, but are widely represented throughout immune system cell types.
Some of this shared expression might have been expected based on known physiology (e.g.
antigen presentation pathways active in both B cells and DCs, cytotoxic effector molecules
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in NK and T cells), but other elements were less predictable. Again, some of these shared
expression patterns may be unintended side-effects of transcriptional control pathways, but
these data suggest that there is much re-utilization of functional proteins across cell types.
There is precedent for cross-lineage sharing of gene products, even if their activity varies
with context. For instance, the transcription factor, Tbx21 (aka Tbet) controls different
specialized functions in different cells, favoring Th1 effector functions in T cells, promoting
class switching to IgG2a in B cells, and necessary for induction of Type-1 interferons in
dendritic cells by TLR9 ligands (25). Similarly, Blimp-1 was originally discovered as a
transcriptional repressor of INF-β in human HeLa cells, then found to be required for the
differentiation and maintenance of immunoglobulin-secreting B cells and plasma cells, and
later identified as impacting T cell differentiation at several stages (in the thymus, during
Th1/2 specification, and in Treg cells) (26).

Overall, the picture painted by these studies of the relationship between T and B
lymphocytes departs somewhat from prior notions, with very few transcripts that are
exquisitely specific of either cell, but with differences in transcriptome distributions that are
very broad but also quite nuanced.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Defining T vs. B differential signatures
A): RNA preparations from CD4+ cells and CD19 B cells were profiled on Affymetrix and
Illumina whole-genome microarrays, and the T vs. B FoldChange was calculated for the
same genes on both microarrays. B): Consensus T vs. B cell expression ratios were
calculated by combining information from four different microarray platforms, and a false-
discovery rate on these FoldChange values was estimated by repeated randomization of the
datasets, testing how often the FoldChange observed for a given gene could be observed by
chance. The threshold FoldChange values which reached statistical significance were
estimated at <0.88 and > 1.11, for a genome-wide p=0.05 C): Datasets from several
populations of mature T cells (whole CD3+CD4+ splenocytes, naïve CD4+ and CD8+ cells
from spleen and LN, CD44hi CD4+ and CD8+ splenocytes) and B cells (whole CD19+

splenocytes, mature bone marrow “Fraction F” cells, T3 splenic subset, follicular B from
spleen and peritoneal cavity, marginal zone B), all profiled on the Affymetrix MuGeneST1.0
platform, were analyzed in combination to generate consensus measures of differential
expression. The aggregate T vs. B expression ratios are plotted against the Student's t-test p-
value. “Top 100” signature genes for B and T are outlined. D): Comparison of T/B
FoldChanges determined from the multiplatform data (black dots) or from the combined
ImmGen datasets (grey dots).
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Figure 2. The transcripts that most distinguish T and B cells are expressed throughout immune
cells
Heat-map representations of the expression of the “Top 100” T cell signature genes across
the immune cell populations contained in the ImmGen database. Genes are arranged by
hierarchical clustering.
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Figure 3. The transcripts that most distinguish T and B cells...continued
Heat-map representations of the expression of the “Top 100” B cell signature genes across
the immune cell populations contained in the ImmGen database. Genes are arranged by
hierarchical clustering.
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Figure 4. The transcripts that most distinguish T and B cells are acquired, or lost, in stages
throughout differentiation
Heat-map representations of the expression of the “Top 100” T cell of B cell genes during T
cell differentiation in the thymus (A,C) or during B cell differentiation in the bone marrow
(B,D). Cell-types have been arranged according to their sequence during differentiation and
genes were clustered using an ordering algorithm according to the stage at which they are
expressed. E): Population plot in which cell-types have been positioned according to their
“T-ness” and “B-ness”, defined from the aggregate expression values of genes most
differentially expressed in mature B and T cells (see Materials and Methods).
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Figure 5. Partial sharing of co-regulated gene clusters within T cell differentiation and outside
the T cell lineage
To determine which transcripts exhibit coordinated expression, as a reflection of possible
shared regulatory mechanisms, pair-wise correlation coefficients were calculated for all
transcripts of the “Top 200” T cell signature genes, within all ImmGen datasets except for T
and B cells (“nonT/nonB”) or within the T cell differentiation datasets. As a reference, the
same coefficients were calculated on a set of 2000 transcripts picked at random. A):
distribution of the correlation coefficients; note that there is a very significant skewing of the
distribution of correlation coefficients between T signature genes in the T-differentiation
datagroup (top left), far less marked within the nonT/nonB datagroup (top right). B): Scatter
plot comparison of all pair-wise correlations between T signature genes within the nonT/
nonB (X-axis) or T-differentiation (Y-axis) datagroups; to avoid artifacts due to the different
sizes and composition of the nonT/nonB and T-differentiation datasets, the primary
correlation coefficients were transformed to a z-score by reference to the mean and standard
deviation of the correlation coefficients for the randomly picked reference gene-set. Note
that the majority of transcript pairs that show strong correlation within the T-differentiation
datagroup (z-score > 2) show no correlation within the nonT/nonB populations (z-scores
distributed around 0), although there is a distinct “shoulder” of gene pairs that do show some
correlation across both conditions (top right of the plot). C): A k-means clustering algorithm
was used to partition T-signature genes into distinct clusters based on their correlation
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within the T-differentiation datagroup. Transcript levels for representative clusters are
shown as a heat-map for the nonT/nonB (left) and T-differentiation (right) datagroups. A
few clusters showed consistent expression across both datagroups (e.g. Cluster 1, top,
primarily reflecting shared expression with NK cells), while many were only co-regulated
within the T-differentiation datagroup.
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Table I
Summary of multi-platform gene-expression data

A) Splenic CD4+ T cells and CD19+ B cells were profiled on Affymetrix, Agilent, Nimbelgen and Illumina
whole-genome microarrays. Resulting gene-expression data from each platform were analyzed to yield the
percentage of expressed probes, percentage of false-positives (defined as a probe being expressed on one
platform, but not the other three), percentage of false-negatives (defined as the absence of a probe's expression
in one platform but present in the other three) and overall concordance (defined as the overall percentage of
probes whose expression or absence is in agreement with the majority of platforms). B) The overall expression
of the genome in T and B cells was calculated based on the number of genes registering as significantly
expressed for each platform with concordance being defined as a given gene's expression or absence in 2, 3 or
4 out of 4 platforms (rows).

Table IA

Sample Expressed genes (%) False-positives (%) False-negatives (%) Overall Concordance (%)

Affymetrix CD19 51 8 2 84

Affymetrix CD4 50 8 2 84

Agilent CD19 43 4 7 92

Agilent CD4 43 4 7 92

Illumina CD19 47 9 8 84

Illumina CD4 47 10 8 83

Nimblegen CD19 46 5 4 89

Nimblegen CD4 46 4 4 89

Table IB

Concordant Chips Expressed in CD4 (%) Expressed in CD19 (%)

2 of 4 49.74 49.67

3 of 4 43.26 43.35

4 of 4 32.41 32.06
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Table II
Multi-platform T vs. B differential signature genes

Consensus T vs. B FoldChange values (calculated as the average of all four platforms, eliminating outliers)
along with false discovery rate (FDR) for the ‘top 25’ most differentially expressed genes for CD4+ T and
CD19+ B cells.

Gene Symbol Combined multiplatform T/B ratio FDR

IGL-V1 0.002 <0.00003

H2-AB1 0.002 <0.00003

LY6D 0.002 <0.00003

MS4A1 0.002 <0.00003

H2-AA 0.002 <0.00003

H2-EB1 0.003 <0.00003

SCD1 0.003 0.000166667

CD74 0.003 <0.00003

BLNK 0.004 <0.00003

H2-DMB2 0.004 0.0006

LY86 0.005 0.000366667

CR2 0.005 <0.00003

H2-DMB1 0.005 <0.00003

LYN 0.005 0.0002

PLAC8 0.005 <0.00003

STK23 0.005 6.66667E-05

FCER2A 0.005 <0.00003

NAPSA 0.005 3.33333E-05

RASGRP3 0.006 <0.00003

FAIM3 0.006 0.0001

2010001M09RIK 0.006 3.33333E-05

CD79B 0.006 0.000666667

HHEX 0.006 6.66667E-05

BANK1 0.007 <0.00003

TNFRSF13C 0.007 3.33333E-05

CD3G 177.559 <0.00003

CD247 131.154 <0.00003

CD3D 125.911 <0.00003

IL7R 117.127 <0.00003

TCRA 98.672 <0.00003

TRAT1 96.180 <0.00003

IGFBP4 88.251 <0.00003

2610019F03RIK 84.180 <0.00003

E430004N04RIK 80.586 <0.00003

A530021J07 76.378 <0.00003

PRKCQ 76.298 0.002433333

2310032F03RIK 70.026 6.66667E-05
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Gene Symbol Combined multiplatform T/B ratio FDR

ITK 68.390 <0.00003

PRKCH 60.929 <0.00003

TCF7 56.097 3.33333E-05

BCL11B 55.890 <0.00003

LAT 55.061 0.0002

TCRB-V13 45.987 <0.00003

THY1 44.725 <0.00003

1700025G04RIK 44.512 6.66667E-05

TNFRSF7 43.149 <0.00003

FYB 43.011 <0.00003

BC021614 40.585 0.000133333

CD6 40.556 <0.00003

AMPD1 40.043 <0.00003
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Table III
Multi-platform T vs. B differential signature genes

Consensus T vs. B FoldChange values (calculated as the average of all four platforms, eliminating outliers)
along with false discovery rate (FDR) for the ‘top 25’ most differentially expressed genes for CD4+ T and
CD19+ B cells.

Gene Symbol Combined multiplatform T/B ratio FDR

Igl-V1 0.002 <0.00003

H2-Ab1 0.002 <0.00003

Ly6d 0.002 <0.00003

Ms4a1 0.002 <0.00003

H2-Aa 0.002 <0.00003

H2-Eb1 0.003 <0.00003

Scd1 0.003 0.000166667

Cd74 0.003 <0.00003

Blnk 0.004 <0.00003

H2-Dmb2 0.004 0.0006

Ly86 0.005 0.000366667

Cr2 0.005 <0.00003

H2-Dmb1 0.005 <0.00003

Lyn 0.005 0.0002

Plac8 0.005 <0.00003

Stk23 0.005 6.66667E-05

Fcer2a 0.005 <0.00003

Napsa 0.005 3.33333E-05

Rasgrp3 0.006 <0.00003

Faim3 0.006 0.0001

2010001m09rik 0.006 3.33333E-05

Cd79b 0.006 0.000666667

Hhex 0.006 6.66667E-05

Bank1 0.007 <0.00003

Tnfrsf13c 0.007 3.33333E-05

Cd3g 177.559 <0.00003

Cd247 131.154 <0.00003

Cd3d 125.911 <0.00003

Il7r 117.127 <0.00003

Tcra 98.672 <0.00003

Trat1 96.180 <0.00003

Igfbp4 88.251 <0.00003

2610019f03rik 84.180 <0.00003

E430004n04rik 80.586 <0.00003

A530021j07 76.378 <0.00003

Prkcq 76.298 0.002433333

2310032f03rik 70.026 6.66667E-05
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Gene Symbol Combined multiplatform T/B ratio FDR

Itk 68.390 <0.00003

Prkch 60.929 <0.00003

Tcf7 56.097 3.33333E-05

Bcl11b 55.890 <0.00003

Lat 55.061 0.0002

Tcrb-V13 45.987 <0.00003

Thy1 44.725 <0.00003

1700025g04rik 44.512 6.66667E-05

Tnfrsf7 43.149 <0.00003

Fyb 43.011 <0.00003

Bc021614 40.585 0.000133333

Cd6 40.556 <0.00003

Ampd1 40.043 <0.00003

J Immunol. Author manuscript; available in PMC 2012 March 1.


