67 research outputs found

    Zebrafish Prickle, a Modulator of Noncanonical Wnt/Fz Signaling, Regulates Gastrulation Movements

    Get PDF
    AbstractIn addition to the canonical Wnt/β-catenin signaling pathway, at least two noncanonical Wnt/Fz pathways have been described: the planar cell polarity (PCP) pathway in Drosophila[1] and the Wnt/calcium pathway in vertebrate embryos [2]. Recent work suggests that a vertebrate pathway homologous to the PCP pathway acts to regulate the convergent extension movements of gastrulation [3–7]. To further test this hypothesis, we have identified two zebrafish homologs of the Drosophila PCP gene prickle (pk) [8], both of which show discrete and dynamic expression patterns during gastrulation. Both gain and loss of pk1 function cause defects in convergent extension. Pk1 localizes to both the cytoplasm and the cell membrane, and its normal localization is partially dependent on its C-terminal prenylation motif. At the cell membrane, Pk1 is frequently localized asymmetrically around the cell and can colocalize with the signaling molecule Dishevelled (Dsh). In overexpression assays, Pk1 is able to activate AP-1-mediated transcription and inhibit activation of Wnt/β-catenin signaling. Like noncanonical Wnts [9, 10], overexpression of Pk1 increases the frequency of calcium transients in zebrafish blastulae. Our results support the idea that a vertebrate PCP pathway regulates gastrulation movements and suggest that there is overlap between the PCP and Wnt/calcium pathways

    Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos

    Get PDF
    Wnt ligands and Frizzled (Fz) receptors have been shown to activate multiple intracellular signaling pathways. Activation of the Wnt–β-catenin pathway has been described in greatest detail, but it has been reported that Wnts and Fzs also activate vertebrate planar cell polarity (PCP) and Wnt–Ca2+ pathways. Although the intracellular protein Dishevelled (Dsh) plays a dual role in both the Wnt–β-catenin and the PCP pathways, its potential involvement in the Wnt–Ca2+ pathway has not been investigated. Here we show that a Dsh deletion construct, XDshΔDIX, which is sufficient for activation of the PCP pathway, is also sufficient for activation of three effectors of the Wnt–Ca2+ pathway: Ca2+ flux, PKC, and calcium/calmodulin-dependent protein kinase II (CamKII). Furthermore, we find that interfering with endogenous Dsh function reduces the activation of PKC by Xfz7 and interferes with normal heart development. These data suggest that the Wnt–Ca2+ pathway utilizes Dsh, thereby implicating Dsh as a component of all reported Fz signaling pathways

    A Chemical and Genetic Approach to the Mode of Action of Fumagillin

    Get PDF
    SummaryPrevious mode of action studies identified methionine aminopeptidase 2 (MetAP-2) as the target of the antiangiogenic natural product fumagillin and its drug candidate analog, TNP-470. We report here that TNP-470-mediated MetAP-2 inhibition blocks noncanonical Wnt signaling, which plays a critical role in development, cell differentiation, and tumorigenesis. Consistent with this finding, antisense MetAP-2 morpholino oligonucleotide injection in zebrafish embryos phenocopies gastrulation defects seen in noncanonical Wnt5 loss-of-function zebrafish mutants. MetAP-2 inhibition or depletion blocks signaling downstream of the Wnt receptor Frizzled, but upstream of Calmodulin-dependent Kinase II, RhoA, and c-Jun N-terminal Kinase. Moreover, we demonstrate that TNP-470 does not block the canonical Wnt/β-catenin pathway. Thus, TNP-470 selectively regulates noncanonical over canonical Wnt signaling and provides a unique means to explore and dissect the biological systems mediated by these pathways

    Regulator of G Protein Signaling 3 Modulates Wnt5b Calcium Dynamics and Somite Patterning

    Get PDF
    Vertebrate development requires communication among cells of the embryo in order to define the body axis, and the Wnt-signaling network plays a key role in axis formation as well as in a vast array of other cellular processes. One arm of the Wnt-signaling network, the non-canonical Wnt pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GTPase-activating proteins (GAPs), however, the possible role of RGS proteins in non-canonical Wnt signaling and development is not known. Here, we identify rgs3 as having an overlapping expression pattern with wnt5b in zebrafish and reveal that individual knockdown of either rgs3 or wnt5b gene function produces similar somite patterning defects. Additionally, we describe endogenous calcium release dynamics in developing zebrafish somites and determine that both rgs3 and wnt5b function are required for appropriate frequency and amplitude of calcium release activity. Using rescue of gene knockdown and in vivo calcium imaging assays, we demonstrate that the activity of Rgs3 requires its ability to interact with Gα subunits and function as a G protein GAP. Thus, Rgs3 function is necessary for appropriate frequency and amplitude of calcium release during somitogenesis and is downstream of Wnt5 activity. These results provide the first evidence for an essential developmental role of RGS proteins in modulating the duration of non-canonical Wnt signaling

    The N-terminal region of centrosomal protein 290 (CEP290) restores vision in a zebrafish model of human blindness

    Get PDF
    The gene coding for centrosomal protein 290 (CEP290), a large multidomain protein, is the most frequently mutated gene underlying the non-syndromic blinding disorder Leber's congenital amaurosis (LCA). CEP290 has also been implicated in several cilia-related syndromic disorders including Meckel–Gruber syndrome, Joubert syndrome, Senor–Loken syndrome and Bardet–Biedl syndrome (BBS). In this study, we characterize the developmental and functional roles of cep290 in zebrafish. An antisense oligonucleotide [Morpholino (MO)], designed to generate an altered cep290 splice product that models the most common LCA mutation, was used for gene knockdown. We show that cep290 MO-injected embryos have reduced Kupffer's vesicle size and delays in melanosome transport, two phenotypes that are observed upon knockdown of bbs genes in zebrafish. Consistent with a role in cilia function, the cep290 MO-injected embryos exhibited a curved body axis. Patients with LCA caused by mutations in CEP290 have reduced visual perception, although they present with a fully laminated retina. Similarly, the histological examination of retinas from cep290 MO-injected zebrafish revealed no gross lamination defects, yet the embryos had a statistically significant reduction in visual function. Finally, we demonstrate that the vision impairment caused by the disruption of cep290 can be rescued by expressing only the N-terminal region of the human CEP290 protein. These data reveal that a specific region of the CEP290 protein is sufficient to restore visual function and this region may be a viable gene therapy target for LCA patients with mutations in CEP290

    A Novel Role for MAPKAPK2 in Morphogenesis during Zebrafish Development

    Get PDF
    One of the earliest morphogenetic processes in the development of many animals is epiboly. In the zebrafish, epiboly ensues when the animally localized blastoderm cells spread, thin over, and enclose the vegetally localized yolk. Only a few factors are known to function in this fundamental process. We identified a maternal-effect mutant, betty boop (bbp), which displays a novel defect in epiboly, wherein the blastoderm margin constricts dramatically, precisely when half of the yolk cell is covered by the blastoderm, causing the yolk cell to burst. Whole-blastoderm transplants and mRNA microinjection rescue demonstrate that Bbp functions in the yolk cell to regulate epiboly. We positionally cloned the maternal-effect bbp mutant gene and identified it as the zebrafish homolog of the serine-threonine kinase Mitogen Activated Protein Kinase Activated Protein Kinase 2, or MAPKAPK2, which was not previously known to function in embryonic development. We show that the regulation of MAPKAPK2 is conserved and p38 MAP kinase functions upstream of MAPKAPK2 in regulating epiboly in the zebrafish embryo. Dramatic alterations in calcium dynamics, together with the massive marginal constrictive force observed in bbp mutants, indicate precocious constriction of an F-actin network within the yolk cell, which first forms at 50% epiboly and regulates epiboly progression. We show that MAPKAPK2 activity and its regulator p38 MAPK function in the yolk cell to regulate the process of epiboly, identifying a new pathway regulating this cell movement process. We postulate that a p38 MAPKAPK2 kinase cascade modulates the activity of F-actin at the yolk cell margin circumference allowing the gradual closure of the blastopore as epiboly progresses
    corecore