136 research outputs found

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    Longitudinal variability of time-location/activity patterns of population at different ages: a longitudinal study in California

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns.</p> <p>Method</p> <p>We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period.</p> <p>Results</p> <p>As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession.</p> <p>Conclusions</p> <p>This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be taken into account in simulating long-term time-activity patterns in exposure modeling.</p

    Monitoring Toxicity Associated with Parenteral Sodium Stibogluconate in the Day-Case Management of Returned Travellers with New World Cutaneous Leishmaniasi

    Get PDF
    Sodium stibogluconate (SbV), a pentavalent antimonial, administered parenterally, is the recommended treatment for South American cutaneous leishmaniasis, caused by Leishmania Viannia, which is a neglected disease that affects many people resident in Central and South America, as well as travellers to the areas. Antimonials have been used for the treatment of leishmaniasis since the 1930s. We report the toxicity experienced by a series of NWCL patients receiving SbV in a resource-rich setting. This study also evaluates administration of the drug to patients without admitting them to hospital. The administration of parenteral SbV was associated with myelosuppression, derangement of markers of liver function and prolongation of the QT interval on electrocardiography, although these effects were not found to be associated with adverse clinical events, and the majority of doses of SbV were administered without cause for hospital admission. Our data shows that parenteral SbV treatment may be provided with reduced monitoring for toxicity than is currently done, and on an outpatient-basis, without endangering safety. Such practice, with reduced demands on local finances and the healthcare workforce, would be desirable in more resource-limited settings

    A Neutralizing RNA Aptamer against EGFR Causes Selective Apoptotic Cell Death

    Get PDF
    Nucleic acid aptamers have been developed as high-affinity ligands that may act as antagonists of disease-associated proteins. Aptamers are non immunogenic and characterised by high specificity and low toxicity thus representing a valid alternative to antibodies or soluble ligand receptor traps/decoys to target specific cancer cell surface proteins in clinical diagnosis and therapy. The epidermal growth factor receptor (EGFR) has been implicated in the development of a wide range of human cancers including breast, glioma and lung. The observation that its inhibition can interfere with the growth of such tumors has led to the design of new drugs including monoclonal antibodies and tyrosine kinase inhibitors currently used in clinic. However, some of these molecules can result in toxicity and acquired resistance, hence the need to develop novel kinds of EGFR-targeting drugs with high specificity and low toxicity. Here we generated, by a cell-Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach, a nuclease resistant RNA-aptamer that specifically binds to EGFR with a binding constant of 10 nM. When applied to EGFR-expressing cancer cells the aptamer inhibits EGFR-mediated signal pathways causing selective cell death. Furthermore, at low doses it induces apoptosis even of cells that are resistant to the most frequently used EGFR-inhibitors, such as gefitinib and cetuximab, and inhibits tumor growth in a mouse xenograft model of human non-small-cell lung cancer (NSCLC). Interestingly, combined treatment with cetuximab and the aptamer shows clear synergy in inducing apoptosis in vitro and in vivo. In conclusion, we demonstrate that this neutralizing RNA-aptamer is a promising bio-molecule that can be developed as a more effective alternative to the repertoire of already existing EGFR-inhibitors

    Dendritic Cells Crosspresent Antigens from Live B16 Cells More Efficiently than from Apoptotic Cells and Protect from Melanoma in a Therapeutic Model

    Get PDF
    Dendritic cells (DC) are able to elicit anti-tumoral CD8+ T cell responses by cross-presenting exogenous antigens in association with major histocompatibility complex (MHC) class I molecules. Therefore they are crucial actors in cell-based cancer immunotherapy. Although apoptotic cells are usually considered to be the best source of antigens, live cells are also able to provide antigens for cross-presentation by DC. We have recently shown that prophylactic immunotherapy by DC after capture of antigens from live B16 melanoma cells induced strong CD8+ T-cell responses and protection against a lethal tumor challenge in vivo in C57Bl/6 mice. Here, we showed that DC cross-presenting antigens from live B16 cells can also inhibit melanoma lung dissemination in a therapeutic protocol in mice. DC were first incubated with live tumor cells for antigen uptake and processing, then purified and irradiated for safety prior to injection. This treatment induced stronger tumor-specific CD8+ T-cell responses than treatment by DC cross-presenting antigens from apoptotic cells. Apoptotic B16 cells induced more IL-10 secretion by DC than live B16 cells. They underwent strong native antigen degradation and led to the expression of fewer MHC class I/epitope complexes on the surface of DC than live cells. Therefore, the possibility to use live cells as sources of tumor antigens must be taken into account to improve the efficiency of cancer immunotherapy

    Effect of Maternal HIV-1 Status and Antiretroviral Drugs on Haematological Profiles of South African Infants in Early Life

    Get PDF
    Maternal HIV-1 status and antiretroviral drug exposure may influence the haematological profiles of infants. We recruited infants from 118 uninfected control women and from 483 HIV-1 infected women who received no antiretroviral drugs (n=28), or received single-dose Nevirapine (sdNVP) (n=424) or triple-drug combination therapy (n=31) to reduce HIV-1 transmission. Blood was drawn from infants within 24 hours of delivery or 6-12 weeks post-delivery and full blood counts performed using a fully automated AcT-5-diff haematology analyser and reference controls. Exposed uninfected (EU; no NVP) differed from control infants only in having lower basophil counts and percentages. In all infant groups, leukocyte profiles showed characteristic quantitative changes with age in the first 6 weeks of life. HIV-1 infected infants displayed by 6 weeks elevations in white blood cells, lymphocyte, monocyte and basophil counts, and monocyte and basophil percentages, when compared to EU infants. At birth EU NVP-treated infants exhibited elevated monocyte percentages and counts and basophil counts that did not persist at 6 weeks. Interestingly, EU newborns of mothers with high CD4 counts (> 500 cells/μl) that had taken sdNVP had significantly elevated white blood cell, monocyte and basophil counts when compared to newborn infants of mothers with similar CD4 counts that had not taken sdNVP; this was not evident in infants of mothers with CD4 counts <200 cells/μl. These previously undescribed features may affect immune response capability in early life and clinical consequences of such changes need to be further investigated

    Municipal distribution of breast cancer mortality among women in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spain has one of the lowest rates of breast cancer in Europe, though estimated incidence has risen substantially in recent decades. Some years ago, the Spanish Cancer Mortality Atlas showed Spain as having a heterogeneous distribution of breast cancer mortality at a provincial level. This paper describes the municipal distribution of breast cancer mortality in Spain and its relationship with socio-economic indicators.</p> <p>Methods</p> <p>Breast cancer mortality was modelled using the Besag-York-Molliè autoregressive spatial model, including socio-economic level, rurality and percentage of population over 64 years of age as surrogates of reproductive and lifestyle risk factors. Municipal relative risks (RRs) were independently estimated for women aged under 50 years and for those aged 50 years and over. Maps were plotted depicting smoothed RR estimates and the distribution of the posterior probability of RR>1.</p> <p>Results</p> <p>In women aged 50 years and over, mortality increased with socio-economic level, and was lower in rural areas and municipalities with higher proportion of old persons. Among women aged under 50 years, rurality was the only statistically significant explanatory variable.</p> <p>For women older than 49 years, the highest relative risks were mainly registered for municipalities located in the Canary Islands, Balearic Islands, the Mediterranean coast of Catalonia and Valencia, plus others around the Ebro River. In premenopausal women, the pattern was similar but tended to be more homogeneous. In mainland Spain, a group of municipalities with high RRs were located in Andalusia, near the left bank of the Guadalquivir River.</p> <p>Conclusion</p> <p>As previously observed in other contexts, mortality rates are positively related with socio-economic status and negatively associated with rurality and the presence of a higher proportion of people over age 64 years. Taken together, these variables represent the influence of lifestyle factors which have determined the increase in breast cancer frequency over recent decades. The results for the younger group of women suggest an attenuation of the socio-economic gradient in breast cancer mortality in Spain. The geographical variation essentially suggests the influence of other environmental variables, yet the descriptive nature of this study does not allow for the main determinants to be established.</p

    Structural Alterations in a Component of Cytochrome c Oxidase and Molecular Evolution of Pathogenic Neisseria in Humans

    Get PDF
    Three closely related bacterial species within the genus Neisseria are of importance to human disease and health. Neisseria meningitidis is a major cause of meningitis, while Neisseria gonorrhoeae is the agent of the sexually transmitted disease gonorrhea and Neisseria lactamica is a common, harmless commensal of children. Comparative genomics have yet to yield clear insights into which factors dictate the unique host-parasite relationships exhibited by each since, as a group, they display remarkable conservation at the levels of nucleotide sequence, gene content and synteny. Here, we discovered two rare alterations in the gene encoding the CcoP protein component of cytochrome cbb3 oxidase that are phylogenetically informative. One is a single nucleotide polymorphism resulting in CcoP truncation that acts as a molecular signature for the species N. meningitidis. We go on to show that the ancestral ccoP gene arose by a unique gene duplication and fusion event and is specifically and completely distributed within species of the genus Neisseria. Surprisingly, we found that strains engineered to express either of the two CcoP forms conditionally differed in their capacity to support nitrite-dependent, microaerobic growth mediated by NirK, a nitrite reductase. Thus, we propose that changes in CcoP domain architecture and ensuing alterations in function are key traits in successive, adaptive radiations within these metapopulations. These findings provide a dramatic example of how rare changes in core metabolic proteins can be connected to significant macroevolutionary shifts. They also show how evolutionary change at the molecular level can be linked to metabolic innovation and its reversal as well as demonstrating how genotype can be used to infer alterations of the fitness landscape within a single host
    corecore