8 research outputs found

    Demonstration of quantum volume 64 on a superconducting quantum computing system

    Full text link
    We improve the quality of quantum circuits on superconducting quantum computing systems, as measured by the quantum volume, with a combination of dynamical decoupling, compiler optimizations, shorter two-qubit gates, and excited state promoted readout. This result shows that the path to larger quantum volume systems requires the simultaneous increase of coherence, control gate fidelities, measurement fidelities, and smarter software which takes into account hardware details, thereby demonstrating the need to continue to co-design the software and hardware stack for the foreseeable future.Comment: Fixed typo in author list. Added references [38], [49] and [52

    Tuning Methods for Semiconductor Spin Qubits

    Get PDF
    We present efficient methods to reliably characterize and tune gate-defined semiconductor spin qubits. Our methods are developed for double quantum dots in GaAs heterostructures, but they can easily be adapted to other quantum-dot-based qubit systems. These tuning procedures include the characterization of the interdot tunnel coupling, the tunnel coupling to the surrounding leads, and the identification of various fast initialization points for the operation of the qubit. Since semiconductor-based spin qubits are compatible with standard semiconductor process technology and hence promise good prospects of scalability, the challenge of efficiently tuning the dot’s parameters will only grow in the near future, once the multiqubit stage is reached. With the anticipation of being used as the basis for future automated tuning protocols, all measurements presented here are fast-to-execute and easy-to-analyze characterization methods. They result in quantitative measures of the relevant qubit parameters within a couple of seconds and require almost no human interference

    Intra-operative intravenous fluid restriction reduces perioperative red blood cell transfusion in elective cardiac surgery, especially in transfusion-prone patients: a prospective, randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac surgery is a major consumer of blood products, and hemodilution increases transfusion requirements during cardiac surgery under CPB. As intraoperative parenteral fluids contribute to hemodilution, we evaluated the hypothesis that intraoperative fluid restriction reduces packed red-cell (PRC) use, especially in transfusion-prone adults undergoing elective cardiac surgery.</p> <p>Methods</p> <p>192 patients were randomly assigned to restrictive (group A, 100 pts), or liberal (group B, 92 pts) intraoperative intravenous fluid administration. All operations were conducted by the same team (same surgeon and perfusionist). After anesthesia induction, intravenous fluids were turned off in Group A (fluid restriction) patients, who only received fluids if directed by protocol. In contrast, intravenous fluid administration was unrestricted in group B. Transfusion decisions were made by the attending anesthesiologist, based on identical transfusion guidelines for both groups.</p> <p>Results</p> <p>137 of 192 patients received 289 PRC units in total. Age, sex, weight, height, BMI, BSA, LVEF, CPB duration and surgery duration did not differ between groups. Fluid balance was less positive in Group A. Fewer group A patients (62/100) required transfusion compared to group B (75/92, p < 0.04). Group A patients received fewer PRC units (113) compared to group B (176; p < 0.0001). Intraoperatively, the number of transfused units and transfused patients was lower in group A (31 u in 19 pts vs. 111 u in 62 pts; p < 0.001). Transfusions in ICU did not differ significantly between groups. Transfused patients had higher age, lower weight, height, BSA and preoperative hematocrit, but no difference in BMI or discharge hematocrit. Group B (p < 0.005) and female gender (p < 0.001) were associated with higher transfusion probability. Logistic regression identified group and preoperative hematocrit as significant predictors of transfusion.</p> <p>Conclusions</p> <p>Our data suggest that fluid restriction reduces intraoperative PRC transfusions without significantly increasing postoperative transfusions in cardiac surgery; this effect is more pronounced in transfusion-prone patients.</p> <p>Trial registration</p> <p>NCT00600704, at the United States National Institutes of Health.</p

    B. Sprachwissenschaft.

    No full text
    corecore