54 research outputs found
Direct experimental observation of nonclassicality in ensembles of single photon emitters
In this work we experimentally demonstrate for the first time a recently
proposed criterion adressed to detect nonclassical behavior in the fluorescence
emission of ensembles of single-photon emitters. In particular, we apply the
method to study clusters of NV centres in diamond observed via
single-photon-sensitive confocal microscopy. Theoretical considerations on the
behavior of the parameter at any arbitrary order in presence of poissonian
noise are presented and, finally, the opportunity of detecting manifold
coincidences is discussed
Efficiency, selectivity and robustness of the nuclear pore complex transport
All materials enter or exit the cell nucleus through nuclear pore complexes
(NPCs), efficient transport devices that combine high selectivity and
throughput. A central feature of this transport is the binding of
cargo-carrying soluble transport factors to flexible, unstructured
proteinaceous filaments called FG-nups that line the NPC. We have modeled the
dynamics of transport factors and their interaction with the flexible FG-nups
as diffusion in an effective potential, using both analytical theory and
computer simulations. We show that specific binding of transport factors to the
FG-nups facilitates transport and provides the mechanism of selectivity. We
show that the high selectivity of transport can be accounted for by competition
for both binding sites and space inside the NPC, which selects for transport
factors over other macromolecules that interact only non-specifically with the
NPC. We also show that transport is relatively insensitive to changes in the
number and distribution of FG-nups in the NPC, due mainly to their flexibility;
this accounts for recent experiments where up to half of the total mass of the
NPC has been deleted, without abolishing the transport. Notably, we demonstrate
that previously established physical and structural properties of the NPC can
account for observed features of nucleocytoplasmic transport. Finally, our
results suggest strategies for creation of artificial nano-molecular sorting
devices.Comment: 38 pages, six figure
Single-photon-emitting optical centers in diamond fabricated upon Sn implantation
The fabrication of luminescent defects in single-crystal diamond upon Sn
implantation and annealing is reported. The relevant spectral features of the
optical centers (emission peaks at 593.5 nm, 620.3 nm, 630.7 nm and 646.7 nm)
are attributed to Sn-related defects through the correlation of their
photoluminescence (PL) intensity with the implantation fluence. Single
Sn-related defects were identified and characterized through the acquisition of
their second-order auto-correlation emission functions, by means of
Hanbury-Brown-Twiss interferometry. The investigation of their single-photon
emission regime as a function of excitation laser power revealed that
Sn-related defects are based on three-level systems with a 6 ns radiative decay
lifetime. In a fraction of the studied centers, the observation of a blinking
PL emission is indicative of the existence of a dark state. Furthermore,
absorption dependence from the polarization of the excitation radiation with
about 45 percent contrast was measured. This work shed light on the existence
of a new optical center associated with a group-IV impurity in diamond, with
similar photo-physical properties to the already well-known Si-V and Ge-V
emitters, thus providing results of interest from both the fundamental and
applicative points of view.Comment: 10 pages, 4 figure
Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits
Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can
efficiently incorporate optically active photoluminescent centers such as the
nitrogen-vacancy complex, thus making them promising candidates as optical
biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without
photobleaching combined with high uptake rate and low cytotoxicity. Focusing on
FNDs interference with neuronal function, here we examined their effect on
cultured hippocampal neurons, monitoring the whole network development as well
as the electrophysiological properties of single neurons. We observed that FNDs
drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and
excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and
consistently reduced action potential (AP) firing frequency (by 36%), as
measured by microelectrode arrays. On the contrary, bursts synchronization was
preserved, as well as the amplitude of spontaneous inhibitory and excitatory
events. Current-clamp recordings revealed that the ratio of neurons responding
with AP trains of high-frequency (fast-spiking) versus neurons responding with
trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs
exerted a comparable action on neuronal subpopulations. At the single cell
level, rapid onset of the somatic AP ("kink") was drastically reduced in
FND-treated neurons, suggesting a reduced contribution of axonal and dendritic
components while preserving neuronal excitability.Comment: 34 pages, 9 figure
Photo-physical properties of He-related color centers in diamond
Diamond is a promising platform for the development of technological
applications in quantum optics and photonics. The quest for color centers with
optimal photo-physical properties has led in recent years to the search for
novel impurity-related defects in this material. Here, we report on a
systematic investigation of the photo-physical properties of two He-related
(HR) emission lines at 535 nm and 560 nm created in three different diamond
substrates upon implantation with 1.3 MeV He+ ions and subsequent annealing.
The spectral features of the HR centers were studied in an "optical grade"
diamond substrate as a function of several physical parameters, namely the
measurement temperature, the excitation wavelength and the intensity of
external electric fields. The emission lifetimes of the 535 nm and 560 nm lines
were also measured by means of time-gated photoluminescence measurements,
yielding characteristic decay times of (29 +- 5) ns and (106 +- 10) ns,
respectively. The Stark shifting of the HR centers under the application of an
external electrical field was observed in a CVD diamond film equipped with
buried graphitic electrodes, suggesting a lack of inversion symmetry in the
defects' structure. Furthermore, the photoluminescence mapping under 405 nm
excitation of a "detector grade" diamond sample implanted at a 1x1010 cm-2 He+
ion fluence enabled to identify the spectral features of both the HR emission
lines from the same localized optical spots. The reported results provide a
first insight towards the understanding of the structure of He-related defects
in diamond and their possible utilization in practical applicationsComment: 9 pages, 3 figure
Fabrication of quantum emitters in aluminium nitride by Al-ion implantation and thermal annealing
Single-photon emitters (SPEs) within wide-bandgap materials represent an
appealing platform for the development of single-photon sources operating at
room temperatures. Group III- nitrides have previously been shown to host
efficient SPEs which are attributed to deep energy levels within the large
bandgap of the material, in a way that is similar to extensively investigated
colour centres in diamond. Anti-bunched emission from defect centres within
gallium nitride (GaN) and aluminium nitride (AlN) have been recently
demonstrated. While such emitters are particularly interesting due to the
compatibility of III-nitrides with cleanroom processes, the nature of such
defects and the optimal conditions for forming them are not fully understood.
Here, we investigate Al implantation on a commercial AlN epilayer through
subsequent steps of thermal annealing and confocal microscopy measurements. We
observe a fluence-dependent increase in the density of the emitters, resulting
in creation of ensembles at the maximum implantation fluence. Annealing at 600
{\deg}C results in the optimal yield in SPEs formation at the maximum fluence,
while a significant reduction in SPE density is observed at lower fluences.
These findings suggest that the mechanism of vacancy formation plays a key role
in the creation of the emitters, and open new perspectives in the defect
engineering of SPEs in solid state.Comment: 11 pages, 7 figure
- …