All materials enter or exit the cell nucleus through nuclear pore complexes
(NPCs), efficient transport devices that combine high selectivity and
throughput. A central feature of this transport is the binding of
cargo-carrying soluble transport factors to flexible, unstructured
proteinaceous filaments called FG-nups that line the NPC. We have modeled the
dynamics of transport factors and their interaction with the flexible FG-nups
as diffusion in an effective potential, using both analytical theory and
computer simulations. We show that specific binding of transport factors to the
FG-nups facilitates transport and provides the mechanism of selectivity. We
show that the high selectivity of transport can be accounted for by competition
for both binding sites and space inside the NPC, which selects for transport
factors over other macromolecules that interact only non-specifically with the
NPC. We also show that transport is relatively insensitive to changes in the
number and distribution of FG-nups in the NPC, due mainly to their flexibility;
this accounts for recent experiments where up to half of the total mass of the
NPC has been deleted, without abolishing the transport. Notably, we demonstrate
that previously established physical and structural properties of the NPC can
account for observed features of nucleocytoplasmic transport. Finally, our
results suggest strategies for creation of artificial nano-molecular sorting
devices.Comment: 38 pages, six figure