169 research outputs found
Determination of the (3x3)-Sn/Ge(111) structure by photoelectron diffraction
At a coverage of about 1/3 monolayer, Sn deposited on Ge(111) below 550 forms
a metastable (sqrt3 x sqrt3)R30 phase. This phase continuously and reversibly
transforms into a (3x3) one, upon cooling below 200 K. The photoemission
spectra of the Sn 4d electrons from the (3x3)-Sn/Ge(111) surface present two
components which are attributed to inequivalent Sn atoms in T4 bonding sites.
This structure has been explored by photoelectron diffraction experiments
performed at the ALOISA beamline of the Elettra storage ring in Trieste
(Italy). The modulation of the intensities of the two Sn components, caused by
the backscattering of the underneath Ge atoms, has been measured as a function
of the emission angle at fixed kinetic energies and viceversa. The bond angle
between Sn and its nearest neighbour atoms in the first Ge layer (Sn-Ge1) has
been measured by taking polar scans along the main symmetry directions and it
was found almost equivalent for the two components. The corresponding bond
lengths are also quite similar, as obtained by studying the dependence on the
photoelectron kinetic energy, while keeping the photon polarization and the
collection direction parallel to the Sn-Ge1 bond orientation (bond emission). A
clear difference between the two bonding sites is observed when studying the
energy dependence at normal emission, where the sensitivity to the Sn height
above the Ge atom in the second layer is enhanced. This vertical distance is
found to be 0.3 Angstroms larger for one Sn atom out of the three contained in
the lattice unit cell. The (3x3)-Sn/Ge(111) is thus characterized by a
structure where the Sn atom and its three nearest neighbour Ge atoms form a
rather rigid unit that presents a strong vertical distortion with respect to
the underneath atom of the second Ge layer.Comment: 10 pages with 9 figures, added reference
Cataclysmic Variables in the First Year of the Zwicky Transient Facility
Using selection criteria based on amplitude, time, and color, we have identified 329 objects as known or candidate cataclysmic variables (CVs) during the first year of testing and operation of the Zwicky Transient Facility. Of these, 90 are previously confirmed CVs, 218 are strong candidates based on the shape and color of their light curves obtained during 3–562 days of observation, and the remaining 21 are possible CVs but with too few data points to be listed as good candidates. Almost half of the strong candidates are within 10 deg of the galactic plane, in contrast to most other large surveys that have avoided crowded fields. The available Gaia parallaxes are consistent with sampling the low mass transfer CVs, as predicted by population models. Our follow-up spectra have confirmed Balmer/helium emission lines in 27 objects, with four showing high-excitation He ii emission, including candidates for an AM CVn, a polar, and an intermediate polar. Our results demonstrate that a complete survey of the Galactic plane is needed to accomplish an accurate determination of the number of CVs existing in the Milky Way
Deformation effects in Ni nuclei produced in Si+Si at 112 MeV
Velocity and energy spectra of the light charged particles (protons and
-particles) emitted in the Si(E = 112 MeV) + Si
reaction have been measured at the Strasbourg VIVITRON Tandem facility. The
ICARE charged particle multidetector array was used to obtain exclusive spectra
of the light particles in the angular range 15 - 150 degree and to determine
the angular correlations of these particles with respect to the emission angles
of the evaporation residues. The experimental data are analysed in the
framework of the statistical model. The exclusive energy spectra of
-particles emitted from the Si + Si compound system are
generally well reproduced by Monte Carlo calculations using spin-dependent
level densities. This spin dependence approach suggests the onset of large
deformations at high spin. A re-analysis of previous -particle data
from the Si + Si compound system, using the same spin-dependent
parametrization, is also presented in the framework of a general discussion of
the occurrence of large deformation effects in the A ~ 60 mass region.Comment: 25 pages, 6 figure
Trade, diplomacy, and warfare: The Quest for elite rhizobia inoculant strains
Rhizobia form symbiotic nitrogen-fixing nodules on leguminous plants, which provides an important source of fixed nitrogen input into the soil ecosystem. The improvement of symbiotic nitrogen fixation is one of the main challenges facing agriculture research. Doing so will reduce the usage of chemical nitrogen fertilizer, contributing to the development of sustainable agriculture practices to deal with the increasing global human population. Sociomicrobiological studies of rhizobia have become a model for the study of the evolution of mutualistic interactions. The exploitation of the wide range of social interactions rhizobia establish among themselves, with the soil and root microbiota, and with the host plant, could constitute a great advantage in the development of a new generation of highly effective rhizobia inoculants. Here, we provide a brief overview of the current knowledge on three main aspects of rhizobia interaction: trade of fixed nitrogen with the plant; diplomacy in terms of communication and possible synergistic effects; and warfare, as antagonism and plant control over symbiosis. Then, we propose new areas of investigation and the selection of strains based on the combination of the genetic determinants for the relevant rhizobia symbiotic behavioral phenotypes
‘Sell[ing] what hasn’t got a name’: An exploration of the different understandings and definitions of ‘community engagement’ work in the performing arts
Widely known to promote broader involvement in the processes which define the arts and culture (Webster, 1997), community engagement work in the performing arts — despite employing a set of commonly recognised norms — has tended to be conceptualised differently both historically and contemporarily. Drawing on ethnographic research — particularly semi-structured qualitative interview accounts of numerous British practitioners with a track record of work in the sector, the article explores these different conceptualisations. The article finds that it is the actual ‘work that matters’ and not what it is named, and that the diversity of understandings and definitions among sectoral practitioners is reflective of evolving thinking, values and practice, something that may be destabilising for better or worse
Inclusive Science Communication Starter Kit
This report summarizes responses from focus groups conducted during the 2019 Inclusive SciComm Symposium and survey responses collected from Symposium attendees before and after their participation in the event. Quotes used herein came directly from Symposium surveys and focus groups or represent paraphrased composites of multiple comments received from symposium attendees
Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti
The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes
Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti
The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes
- …
