10,281 research outputs found

    Unevenness of Loop Location in Complex Networks

    Full text link
    The loop structure plays an important role in many aspects of complex networks and attracts much attention. Among the previous works, Bianconi et al find that real networks often have fewer short loops as compared to random models. In this paper, we focus on the uneven location of loops which makes some parts of the network rich while some other parts sparse in loops. We propose a node removing process to analyze the unevenness and find rich loop cores can exist in many real networks such as neural networks and food web networks. Finally, an index is presented to quantify the unevenness of loop location in complex networks.Comment: 7 pages, 6 figure

    Spectral coarse graining for random walk in bipartite networks

    Get PDF
    Many real-world networks display a natural bipartite structure, while analyzing or visualizing large bipartite networks is one of the most challenges. As a result, it is necessary to reduce the complexity of large bipartite systems and preserve the functionality at the same time. We observe, however, the existing coarse graining methods for binary networks fail to work in the bipartite networks. In this paper, we use the spectral analysis to design a coarse graining scheme specifically for bipartite networks and keep their random walk properties unchanged. Numerical analysis on artificial and real-world bipartite networks indicates that our coarse graining scheme could obtain much smaller networks from large ones, keeping most of the relevant spectral properties. Finally, we further validate the coarse graining method by directly comparing the mean first passage time between the original network and the reduced one.Comment: 7 pages, 3 figure

    Enhancing synchronization in growing networks

    Get PDF
    Most real systems are growing. In order to model the evolution of real systems, many growing network models have been proposed to reproduce some specific topology properties. As the structure strongly influences the network function, designing the function-aimed growing strategy is also a significant task with many potential applications. In this letter, we focus on synchronization in the growing networks. In order to enhance the synchronizability during the network evolution, we propose the Spectral-Based Growing (SBG) strategy. Based on the linear stability analysis of synchronization, we show that our growing mechanism yields better synchronizability than the existing topology-aimed growing strategies in both artificial and real-world networks. We also observe that there is an optimal degree of new added nodes, which means adding nodes with neither too large nor too low degree could enhance the synchronizability. Furthermore, some topology measurements are considered in the resultant networks. The results show that the degree, node betweenness centrality from SBG strategy are more homogenous than those from other growing strategies. Our work highlights the importance of the function-aimed growth of the networks and deepens our understanding of it
    corecore