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Abstract – Most real systems are growing. In order to model the evolution of real systems,
many growing network models have been proposed to reproduce some specific topology properties.
As the structure strongly influences the network function, designing the function-aimed growing
strategy is also a significant task with many potential applications. In this letter, we focus
on synchronization in the growing networks. In order to enhance the synchronizability during
the network evolution, we propose the Spectral-Based Growing (SBG) strategy. Based on the
linear stability analysis of synchronization, we show that our growing mechanism yields better
synchronizability than the existing topology-aimed growing strategies starting from both artificial
and real-world networks. We also observe that there is an optimal degree of new added nodes, which
means adding nodes with neither too large nor too low degree could enhance the synchronizability.
Furthermore, some topology measurements are considered in the resultant networks. The results
show that the degree and node betweenness centrality from SBG strategy are more homogenous
than those from other growing strategies. Our work highlights the importance of the function-
aimed growth of the networks and deepens our understanding of it.

Introduction. – Networks, despite their simplicity,
represent the interaction structure among components
in a wide range of real complex systems, from social
relationships among individuals, to interactions of proteins
in biological systems, and even the interdependence of
function calls in large software projects. The network
concept has been developed as an important tool for
analyzing the relationship of structure and function for
many complex systems in the last decades [1–5]. An
interesting phenomenon observed in complex networks
is synchronization [1]. As a kind of collective behavior,
synchronization is often encountered in living systems,
such as circadian rhythm, phase locking respiration with
mechanical ventilator, phase locking of chicken embryo
heart cells with external stimuli [6]. The early works on
synchronization were concerned with only a small number
of coupled oscillators. However, as the synchronization
in many real-world systems is based on a large number
of dynamical units interacting with a complex coupling
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structure, the research of synchronization on complex
networks has been intensively studied in the past decade.
Previous studies have given us an overview over the

synchronizability of some well-known network models. In
general, random networks have better synchronizability
than regular networks, and Strogatz-Watts networks have
better synchronizability than scale-free networks [7–9].
Actually, there are many factors that affect the network
synchronizability. For example, average shortest distance
is an important factor. Besides, the heterogeneity of the
network is also one of the most influential factors deter-
mining the synchronizability [10,11]. Generally speak-
ing, the less heterogeneous the network is, the better
its synchronizability will be. With these understand-
ings, many methods have been proposed to enhance
synchronizability in complex networks. There are several
main directions including designing strategies for coupling
strength [12–17], modifying network structures [18–21],
flipping the directionality [22–24] and so on. Each group of
methods has its corresponding application field since the
properties of real systems may form different operation
constraints.
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Most of the former works on synchronization focus
on given size networks. However, real-world networks
are growing, which is evidenced by numerous systems
including man-made and natural ones. Many growing
mechanisms are proposed to reproduce some specific
topology properties. For instance, in the pioneering work
of Barabási-Albert (BA) network [3], the preferential
attachment growing mechanism reproduces the power-law
degree distribution observed in many realistic complex
systems. However, in some technological networks such as
electric power grids, the neural networks and even social
networks, the introduction of new nodes are supposed to
enhance the network functions [25,26]. In these cases, the
topology properties of the network should be by-products
during the improvement of the functions [27]. Therefore,
the growing mechanisms for network functions are mean-
ingful and have attracted much attention recently [28–30].
In this letter, employing synchronization as the typi-

cal function, we propose the Spectral-Based Growing
(SBG) strategy. Note that this is only one choice of
functional growing strategies and there are perhaps some
other growing mechanisms which can yield similar results.
We compare the new growing mechanisms with some
existing topology-aimed growing mechanisms including
the Preferential Attachment (PA), Reversed Preferential
Attachment (RPA), Random Attachment (RA) mecha-
nisms. We find that the SBG strategy leads to a better
synchronizability starting from both artificial and real-
world networks. Moreover, detailed study on some topol-
ogy measurements of the resultant networks shows that
the topology measurements such as the degree and node
betweenness centrality in SBG networks are more homo-
geneous than those in the networks from other growing
mechanisms. Interestingly, we observe that the synchro-
nizability enhancement is strongly related to the degree
of new added nodes. The synchronizability would weaken
if the degree of the new nodes are too large or too low.
Actually, there is an optimal degree for each given system
and the optimal degree is approximately proportional to
the average degree of the original networks. Finally, in
order to overcome the drawback of trapping in local opti-
mality of SBG method when a large number of nodes
are added, we tested the simulated-annealing–based SBG
(SSBG) strategy and found a further synchronizability
improvement. Our work deepens our understanding of the
function-aimed growth of networks and may have wide
potential applications.

Spectral-Based Growing (SBG) strategy. – Let
us consider a system withN identical oscillators symmetri-
cally coupled through a network. The equations of motion
for the oscillator state vector x at each node i are

ẋi = F (xi)−σ
N∑

j=1

LijH(xj), (1)

where F (x) determines the uncoupled oscillator dynamics
of each node, H(x) specifies the coupling of the vector

fields, σ is the coupling strength, and L is the graph
Laplacian. Specifically, L is defined as Lij =−1 if an edge
exists between node i and j, and Lii = ki, where ki is the
degree of node i. Solutions of this equation are defined
to be synchronized if xi = xj for all nodes i and j in the
network. From ref. [9], for many oscillatory systems the
master equation is negative only in a single interval [α1, α2]
determined by F and H. This implies that the network is
synchronizable only when the eigenratio λN/λ2 <α2/α1.
One can conclude that the synchronizability is related to
the eigenratio r= λN/λ2, where λN and λ2 are the largest
and second-smallest eigenvalues of the graph Laplacian,
respectively. The smaller the eigenratio r of a network
is, the better its synchronizability will be. Our aim is to
enhance the synchronizability when the network grows,
which is equivalent to minimizing the eigenratio r.
For a symmetric matrix L, the eigenvalues of this matrix

and the corresponding eigenvectors are denoted as λ and
v, respectively. When an edge is added to or removed
from the network, we denote ΔL, Δλ and Δv as the
corresponding perturbation of the Laplacian matrix L, its
eigenvalues and its eigenvectors. We have the following
equations:

(L+ΔL)(v+Δv) = (λ+Δλ)(v+Δv). (2)

Left-multiplying the equation by vT and neglect-
ing second-order terms vTΔLΔv and vTΔλΔv, we

obtain Δλi ≈ vTi ΔLvi
vTi vi

. If an edge between node m and

n is added to the network, ΔLmm =ΔLnn = 1 and
ΔLmn =ΔLnm =−1. Then λi increases by (vi,m− vi,n)2
if the edge is added to the network, where vi is the
eigenvector with unit norm corresponding to λi. This
gives the first-order approximation of the increase in λi.
When an edge is going to be removed from the network,

if
λN−ΔλN,a
λ2−Δλ2,a <

λN−ΔλN,b
λ2−Δλ2,b is satisfied, we choose edge a

instead of edge b since the eigenratio after removing
edge a is smaller. Neglecting the second-order terms,
we obtain that an existing edge a which minimizes
λNΔλ2,a−λ2ΔλN,a should be removed and a nonexisting
edge a which maximizes λNΔλ2,a−λ2ΔλN,a should
be added. Accordingly, we propose the Spectral-Based
Growing (SBG) strategy as follows:

1) A new node i with k links is added, and these k links
are connected randomly to the original network with
uniform probability.

2) For each edge connecting the new node i and an-
other node j, the quantity Cij = λN (v2,i− v2,j)2−
λ2(vN,i− vN,j)2 is calculated, and the edge with
minimum Cij is cut.

3) For each node l (node j in step 2) is not included)
which is not yet connected to the new node i, the
quantity Eil = λN (v2,i− v2,l)2−λ2(vN,i− vN,l)2 is
calculated. Then an edge with maximum Eil is
created. In order to reduce the computational
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complexity, the eigenvectors between step 2) and 3)
is not recomputed.

4) Compare the eigenratio λN/λ2 for the networks
before and after steps 2) and 3). The rewiring is
accepted if the eigenratio becomes smaller otherwise
the process is rejected.

5) Repeat steps 2)–4) until step 4) is rejected. Then
another new node is added to the network and the
process starts again from step 1.

We compare the SBG strategy with some topology-
aimed growing strategies including the Preferential
Attachment (PA), Reversed Preferential Attachment
(RPA) and Random Attachment (RA) strategies. In PA,
the probability of a node i in the network connected by
the new node is proportional to ki, where ki is the degree
of node i. This growing mechanism yields the power-law
degree distribution observed in many realistic systems. In
RPA, the probability of a node i in the network connected
by the new node is proportional to k−1i . Consequently,
the node degree will be homogenous. In RA, the new
nodes randomly connect to existing nodes in the original
network.
In the following simulation, we mainly consider four

different kinds of network models: Barabási-Albert (BA)
network with k= 10 [3]; Watts-Strogatz (WS) small-world
network with p= 0.01 and k= 20 [4]; Erdös-Rényi (ER)
random graph with k= 15 [31]; and Girvan-Newman (GN)
benchmark with kin = 12 and k= 16 [32]. The initial
number of nodes in BA, SW and ER modeled networks
is 300, and the size of GN benchmark is 128. When a
new node is introduced, the degree of it is equal to the
average degree of the original network. Figure 1 shows
the eigenratio r as a function of the number of nodes
added based on these four growing strategies. Obviously,
the eigenratio in SBG strategy decreases fastest in all
these four network models. The eigenratio in RPA strategy
performs second best because it yields a homogeneous
degree distribution which is favorable for synchronization.
As a widely used growing strategy, the PA strategy cannot
lead to a good synchronizability since heterogenous degree
distribution is formed by the PA strategy. Our result
indicates that the strategy aiming at reproducing topology
properties may not guarantee a high-performance of some
typical function.

Topology of the SBG networks and the optimal
degree for new nodes. – In this section, we will
detailedly discuss topology properties of the SBG networks
and the effect of new nodes’ degree on the resultant
synchronizability.
First, we investigate the topology properties of the

networks after the growth including degree, clustering
coefficient, average shortest path length, node between-
ness centrality. Starting from the initial networks with 300
nodes, 20 new nodes are added and the degree of them
is equal to the average degree of the original network.
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Fig. 1: (Color online) Four growing mechanisms starting from
different network models including (a) ER random graph with
k= 15, (b) GN benchmark with kin = 12, (c) WS small-world
network with p= 0.01 and k= 20, (d)BA network with k= 10.
The initial network size in these four models is 300. The results
are obtained by averaging over 20 independent realizations.

We compare SBG networks with the initial, PA, RPA,
and RA networks and the results are shown in table 1.
From the results, we observe that the standard deviation
of node degree (V ARk), the average clustering coefficient
(〈C〉), the average shortest path length (〈d〉), the standard
deviation of node betweenness centrality (V ARb) and the
maximum node betweenness centrality (MAXb) from the
SBG strategy are generally smaller than those from the
topology-aimed growing strategies. It has been pointed
out that networks with optimal synchronizability should
be a class of entangled networks with homogenous topol-
ogy properties, such as degree, node betweenness central-
ity [18]. From the results in table 1, we can see that the
SBG networks are closest to the optimal state among all
these growing strategies.
Second, we find that the synchronizability enhancement

is strongly related to the degree of new added nodes.
Consider an example of ER random graph with the size
of the network N = 100 and average degree k= 5, the
eigenratio of it is r= 17.96. If a new node is introduced
with node degree k= 1, the exhaustive search method
finds that the smallest eigenratio is r= 18.01 which is
even larger than that in the original network. If a new
node is added with degree k= 100, the eigenratio is
r= 55.365 which is also larger than that in the original
network. That is to say, if the degree of new added nodes
is too small (e.g. k= 1) or too large (e.g. k=N), the
synchronizability would weaken. Therefore, there should
be an optimal degree for the new added nodes. We consider
two situations in which one node and ten nodes are added
to ER random networks, respectively. Figure 2(a) and (b)
shows the eigenratio as a function of the node degree of
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Table 1: The topology properties in the resultant networks from different growing mechanisms.

Mechanism V ARk 〈C〉 〈d〉 MAXb V ARb Original Network
SBG 3.161 0.051 2.401 1112.7 184.04
RPA 3.568 0.055 2.403 1266.3 207.23
PA 3.910 0.055 2.402 1315.6 222.13 ER network
RA 3.736 0.055 2.403 1301.7 210.45

SBG 7.710 0.076 2.611 5668 887.17
RPA 7.600 0.075 2.621 5912 882.30
PA 7.950 0.072 2.601 6434 944.26 BA network
RA 7.870 0.078 2.612 6579 921.53

SBG 2.441 0.180 2.010 274.8 42.51
RPA 3.060 0.190 2.021 321.9 61.48
PA 3.860 0.200 2.033 403.7 75.55 GN network
RA 3.310 0.182 2.014 405.8 67.10

SBG 1.550 0.350 2.680 2091.1 273.3
RPA 1.780 0.358 2.690 2000.0 298.1
PA 2.017 0.364 2.700 2392.8 322.1 SW network
RA 1.847 0.361 2.700 2338.5 310.4
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Fig. 2: (Color online) The eigenratio as a function of the degree
of new added nodes. (a) One node is added to the network.
(b) Ten nodes are added to the network. Panels (c) and (d)
show the optimal degree in the SBGmethod as a function of the
average degree of the original networks. The initial networks
are ER models with N = 100. In (a) and (b), the degree of
initial networks is k= 10. The results are obtained by averaging
over 20 independent realizations.

new added nodes. The results indicate that there is an
optimal degree which minimizes the synchronizability of
the resultant networks. In fig. 2(c) and (d), the optimal
degree of new added nodes is approximately proportional
to the average degree of the original ER networks when
the SBG method is used. Moreover, we remark that the
similar relation is observed from the simulations on SW
and BA models.

The application to real-world networks. – In
this section, we will apply the SBG strategy to some
real-world networks. We mainly consider four different
kinds of networks including neural, metabolic, power
grid and social networks. Actually, synchronization has
been shown to be of special relevance in these real
systems [6]. Specifically, large-scale synchronization of
oscillatory neural activity is believed to play a crucial
role in the information and cognitive processing. In the
metabolic networks, synchronization is important for
chemical reactions of metabolism as well as the regulatory
interactions that guide these reactions. Synchronization
of the power grids is understood as every station and
piece of equipment running on the same clock, which
is crucial for its proper operation. Cascading failures
related to de-synchronization can lead to massive power
blackouts. In social systems, synchronization is of widely
interested and related to many collective processes, such
as opinion formation.
Here, we employed C. elegans neural and metabolic

networks, the power grid of western US and the collab-
oration network among scientists working at the Santa
Fe Institute (SFI network) [33]. We adopted the largest
connected component of these networks and consider all of
them as undirected ones. The neural network of C. elegans
contains 302 neurons and 2359 links with nodes represent-
ing neurons and links representing synaptic connections.
In the metabolic network, nodes represent the chemicals
produced and consumed by the reactions. If a pair of
chemicals are in the same reaction, then there is a link
between them. C. elegans metabolic network contains 453
vertices and 4596 edges. The power grid is the network of
high-voltage transmission lines that provide long-distance
transport of electric power in western US. The power grid
network here is with 4994 nodes and 6594 links. The
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Fig. 3: (Color online) The eigenratio as a function of the
degree of new added nodes when SBG strategy is applied
to real-world networks. The real-world networks includes
(a) C. elegans metabolic network; (b) power grid; (c) SFI
network; (d) C. elegans neural network. New nodes are intro-
duced with degree equal to the average degree of the original
networks. The results are obtained by averaging over 20 inde-
pendent realizations.

scientist collaboration network represents the collabora-
tion relations among scientists working at the Santa Fe
Institute. Edges are placed between scientists who have
published at least one paper together. In SFI network,
there are 118 nodes and 200 links.
When new chemicals in metabolic networks, new

neurons in neuron networks, new power plants in power
grids or newcomers in social systems are introduced, how
to enhance the network synchronizability is an important
problem which is meaningful in both theoretical and
practical senses. Starting from these real-world networks,
twenty new nodes are introduced with degree equal to the
average degree of the original networks based on different
growing strategies. Figure 3 shows the eigenratio r as a
function of the number of new nodes. As expected, we
find that the SBG method has advantage in enhancing
synchronizability compared to these topology-aimed
methods in all the real-world networks. Moreover, the
errorbar of the synchronizability from the SBG strategy
is smaller than that from other methods. That is to say,
our method is more effective and reliable. Just like our
simulation on artificial networks, we also observe that
RPA strategy leads to a good synchronizability among all
the topology-aimed strategy. This result proves again the
importance of homogeneous topology for synchronization
when the network is growing.

The SBG strategy with simulated annealing
process. – When just a few nodes are added to a
given network, SBG is an effective growing mechanism
to enhance the network synchronizability. However, the
SBG strategy can be sometimes trapped in the local

maximum, especially when many nodes are added. For
example, when the initial networks is with only 20 nodes,
after adding 500 nodes the synchronizability from SBG
strategy is similar to that from RPA strategy. In this
section, we tested an extended SBG strategy which is
called simulated-annealing–based SBG (SSBG) strategy.
With the simulated annealing process, the SSBG strategy
can jump out of the local maximum and further improve
the SBG method when a large number of nodes are added
to the networks. The algorithm consists of the following
steps:

1) A new node i with k links is added, and these k links
are connected randomly to the original network with
uniform probability.

2) For each edge connecting the new node i and an-
other node j, the quantity Cij = λN (v2,i− v2,j)2−
λ2(vN,i− vN,j)2 is calculated. The probability for
removing an edge is proportional to e

1
Cij .

3) For each node l (node j in step 2) is not included)
which is not yet connected to the new node i,
the quantity Eil = λN (v2,i− v2,l)2−λ2(vN,i− vN,l)2
is calculated. The probability for creating an edge
between the unconnected nodes is proportional to
eEil . In order to reduce the computational complexity,
the eigenratio between step 2) and step 3) is not
recomputed.

4) Compare the eigenratio λN/λ2 for the networks
before and after steps 2) and 3). If the eigen-
ratio λN/λ2 of the new network becomes
smaller, the rewiring is accepted, otherwise the
rewiring is accepted with the probability of
e(−((λN/λ2)New−(λN/λ2)Old)/THR). Here, we fixed
THR= 3.

5) Repeat steps 2)–4) until 150 times of iterations. Then
another new node is added to the network and the
process starts again from step 1).

In our simulation, we start from a small ER random
graph with N = 20, k= 10. Five hundred new nodes are
introduced one by one. The degree of new added nodes
is equal to the average degree of the original networks.
Consequently, the resulting network is independent of the
initial network since the size of the initial network is
sufficiently small. Figure 4 shows eigenratio r as a function
of the number of new nodes added. The results indicates
that SSBG method indeed yields a network with better
synchronizability than the topology-aimed methods.
Finally, from the computational point of view, the

SSBG method is with higher computational complexity
than the original SBG method. However, compared with
the ordinary simulated-annealing method which directly
enhances synchronizability by randomly moving one link
in each iteration, SSBG method can significantly reduce
the computation cost since steps 2) and 3) can speed up
the convergence of the whole process.
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Fig. 4: (Color online) The eigenratio λN/λ2 as a function
of the number of new nodes added. The initial network is
an ER random graph with N = 20, k= 10. New nodes are
introduced with degree equal to the average degree of the
original networks.

Conclusion. – Aiming at improving the synchro-
nizability in the growing networks, we propose the
Spectral-Based Growing (SBG) strategy in this letter.
We compare the SBG strategy with some existing
topology-aimed growing ones including the Preferential
Attachment, Reversed Preferential Attachment, Random
Attachment mechanisms. The results show that the SBG
strategy yields a better synchronizability starting from
both artificial and real-world networks.
Moreover, some topology measurements are consid-

ered in the resultant networks. It shows that the topol-
ogy measurements such as degree and node betweenness
centrality in SBG networks are more homogeneous than
those in the networks from other growing mechanisms.
Interestingly, we find that the synchronizability enhance-
ment is strongly related to the degree of new added nodes.
The synchronizability would be weaker if the degree of
the new nodes are too large or too low. Actually, there
is an optimal degree for each given system and the opti-
mal degree is approximately proportional to the average
degree of the original networks.
Finally, in order to overcome the drawback of trapping

in local maximum of SBG method when a large number of
nodes are added, we tested the simulated-annealing–based
SBG (SSBG) strategy and found a further synchronizabil-
ity improvement. All these findings highlight the impor-
tance of the functional growth of networks and deepen our
understanding of it.
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