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Many real-world networks display a natural bipartite structure, yet analyzing and visualizing

large bipartite networks is one of the open challenges in complex network research. A practical

approach to this problem would be to reduce the complexity of the bipartite system while at the

same time preserve its functionality. However, we find that existing coarse graining methods for

monopartite networks usually fail for bipartite networks. In this paper, we use spectral analysis to

design a coarse graining scheme specific for bipartite networks, which keeps their random walk

properties unchanged. Numerical analysis on both artificial and real-world networks indicates

that our coarse graining can better preserve most of the relevant spectral properties of the

network. We validate our coarse graining method by directly comparing the mean first passage

time of the walker in the original network and the reduced one.

Bipartite networks are naturally suited to understanding

and modeling many real systems. However, when the net-

work contains a very large number of nodes, it becomes

practically impossible to deal with dynamical processes on

it. A promising way to address this problem is to coarse

grain the network, namely, to reduce the networks’ com-

plexity by mapping the large network into a smaller one

while keeping its dynamical properties unchanged. Unlike

monopartite networks which only contain one kind of

nodes, bipartite networks consist of two distinct sets of

nodes, such that links cannot exist between nodes in the

same set. The dynamics on both types of nodes should be

preserved in coarse graining. Additionally, the coarse grai-

ning should preserve the bipartite structure of the network.

However, existing coarse graining methods for monopar-

tite networks cannot achieve these two objectives. In this

paper, we propose a spectral coarse graining method to

preserve the random walk properties for bipartite net-

works. By introducing for each set of nodes a stochastic

matrix, our method treats the two different kinds of nodes

separately. As a result, the reduced networks remain bi-

partite. Both artificial and real bipartite networks are con-

sidered, and we find that the reduced networks have very

similar spectral properties to the original ones. We validate

our method by comparing the mean first passage time in

the original and reduced networks. Our method can be eas-

ily extended to preserve many other spectral-determined

dynamical properties in bipartite networks.

I. INTRODUCTION

As an effective way to model many real systems, com-

plex networks have been intensively studied in the past dec-

ade. Examples range from social relationships among

individuals, to interactions of proteins in biological systems,

to the interdependence of function calls in large software

projects. Network analysis has greatly helped us understand

the structure and function of real-world systems.1–6

Bipartite networks, an important kind of complex net-

work, are composed of two types of nodes with no links

connecting nodes of the same type. For example, the

e-commercial systems consisting of online users and prod-

ucts,7,8 the scientific collaboration system consisting of

authors and papers,9,10 and family name inheritance system

consisting of babies and names11 are naturally described by

such networks. So far, some topological properties such as

clustering coefficient and modularity of bipartite networks

have been studied.12–14 However, one of the most difficult

hurdles in analyzing and visualizing bipartite network is the

size of real-world systems. The online commercial systems,

for instance, can have thousands of products and even mil-

lions of users. Given that most of the algorithms used to

extract the properties of the bipartite network run in times

that grow polynomially with the system size, dealing with

systems with very large size becomes a challenge.

In order to solve the problem mentioned above, a

promising way is to consider some units of the system as

almost indistinguishable and to merge them into one, i.e.,

to reduce the number of nodes and edges by mapping the

network with N nodes and E edges into a smaller one with
�N nodes and �E edges. Based on this concept, several coarse

graining schemes for monopartite network including k-core
decomposition,15,16 box-covering process,17,18 geographi-

cal coarse graining,19 spectral coarse graining20,21 have

been proposed.

Specifically, the k-core decomposition intends to classify

nodes into different shells which represent their importance.

This technique can be used to identify the central core of a

network, and was also shown to be extremely effective for
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visualization purposes. The box-covering technique yields a

new network which can preserve some of the topological fea-

tures of the original one. The geographical coarse graining

uses a renormalization-group like numerical analysis to reduce

the size of the network while preserving the degree distribu-

tion, clustering coefficient, and assortativity correlation. Spec-

tral coarse graining methods, on the other hand, focus on the

dynamical processes taking place on networks. They merge

nodes based on the eigenvectors of different matrices, so that

some spectral-determined dynamical processes such as ran-

dom walk and synchronization on the original network are

kept unchanged. Mathematically, the spectral-based methods

consist in preserving some eigenvalues of the stochastic ma-

trix or the graph Laplacian. In addition, some works have

been dedicated to coarse grain networks for dynamics of het-

erogeneous oscillators22 and other critical phenomena.23

A problem very close related to coarse graining is the

community detection (CD), which groups nodes based on the

link density. Because of the importance and the complexity

of finding meaningful communities, recent years have wit-

nessed an explosion of research on community structure in

graphs, and a very large number of methods and techniques

have been designed24–30 (see, Ref. 31, for a review). How-

ever, there is often no clear statement on which properties of

the initial network are preserved in the network of clusters.

Though the coarse graining methods mentioned above

perform well in monopartite networks, they usually face

problems when directly extended to directed or bipartite net-

works. In directed networks, the role of nodes in dynamics

cannot be well characterized by the eigenvectors since imag-

inary eigenvalues emerge when the adjacency and Laplacian

matrix are asymmetric. This problem is solved by using the

paths to determine the similarity between nodes and finally

preserve the dynamical properties (synchronization) when

merging nodes.32 For bipartite networks, the situation can be

even more complicated. There are two types of nodes in bi-

partite networks and the dynamics on both types of nodes

should be preserved. More importantly, the coarse graining

method should preserve the intrinsic bipartite structure of the

networks (i.e., no link exists between nodes of the same

type). However, if we regard the bipartite networks as

monopartite ones and directly apply the existing coarse grai-

ning methods, nodes from different sets will be merged. Fur-

thermore, using the community detection methods to coarse

grain bipartite networks may significantly change the net-

work function.13,33 As a result, it is still a challenge to pre-

serve both the network function and the bipartite structure in

coarse graining.

In this paper, we introduce a spectral-based approach to

coarse grain bipartite networks. Unlike coarse graining meth-

ods for monopartite networks, our goal is to obtain a reduced

bipartite network that preserves both the random walk prop-

erties of the original network and the bipartite structure. In

order to preserve the random walk properties of both types

of nodes, two matrices (denoted by Wm and Wn) based on

the stochastic matrices of the bipartite network are intro-

duced and a new coarse graining scheme is designed. The

obtained network remains bipartite and several largest non-

trivial eigenvalues of Wm and Wn are preserved. Moreover,

we validate our method by performing a direct test of the

mean first passage time (MFPT) of random walkers on artifi-

cial and real-world bipartite networks. The new method is

robust in various kinds of bipartite networks and the choices

of sinks. Finally, we remark that this method can be easily

extended to preserve many other spectral-determined dynam-

ical properties in bipartite networks.

II. SPECTRAL COARSE GRAINING METHOD
ON BIPARTITE NETWORKS

A. Random walks on monopartite networks

Random walks play a central role in dynamical proper-

ties taking place on complex networks.34 Starting at some

specific initial vertices, the walker jumps with equal proba-

bility from its current location to one of its nearest neighbors

at each time step. A monopartite network G ¼ ðV;EÞ with N
nodes and E link can be described by the adjacency matrix A

with elements Aij ¼ 1, if there is an edge connecting vertices

i and j, otherwise 0. Let piðtÞ be the probability that the

walker is at vertex i at time step t. If the walker is at vertex j
at time step t � 1, the probability of taking a jump along any

of its neighbors is 1=kj. Accordingly, piðtÞ on an undirected

monopartite network is given by

piðtÞ ¼
X

j

Aij

kj
pjðt� 1Þ; (1)

where k j is the degree of vertex j. As a matrix form, Eq. (1)

can be written as ~pðtÞ ¼ AD�1~pðt� 1Þ, where ~p is the vector

with elements p i and D is the diagonal matrix with the degrees

of the vertices down its diagonal D ¼ diagðd1; d2; :::; dNÞ.
Defining a stochastic matrix W ¼ D�1A, random walk in

monopartite network can be characterized by the stochastic

matrix W, and the element wij describes the probability that a

walker goes from node i to node j.
The MFPT is an important characteristic of random

walks.34,39 To compute it exactly, one usually considers

some nodes as traps. The normalized Laplacian matrix of the

network is defined as L ¼ I� D�1A, where I is the identity

matrix. We use C to denote the set of traps and jCj to repre-

sent the number of traps. For simplicity, we distinguish all

nodes in the network by assigning each of them a unique

number. We label consecutively all nodes, excluding those

in C, from 1 to N � C and sinks are labeled from N � Cþ 1

to N. By suppressing the last jCj rows and columns of the

normalized Laplacian matrix, we obtain a submatrix of the

normalized Laplacian matrix L as L0.
The first passage time Ti is defined as a particle first

arriving at any one of the traps given that it starts from node

i. It is shown in Ref. 40 that the first passage time can be

expressed as

Ti ¼
XN�jCj

j¼1

l�1
ij ; (2)

where l�1
ij is the elements of matrix L0. Then the MFPT hTi,

which is defined as the average of Ti over all randomly cho-

sen initial nodes (excluding traps), is given by
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hTi ¼ 1

N

XN�jCj

i¼1

Ti ¼ 1

N

XN�jCj

i¼1

XN�jCj

j¼1

l�1
ij : (3)

Eq. (3) can also be found in the literature in several equiva-

lent forms.35,36

Thus, the exact solution of the MFPT of the unbiased

random walk is given, independently from the number and

the location of the sinks. Equations (2) and (3) can reduce

the problem of computing the MFPT to calculating the

inverse matrix L0 and also can be used to check the MFPT of

different networks in Sec. III B.

B. Random walks on bipartite networks

In bipartite networks, connections between vertices are

also described by the adjacency matrix. Different from the

monopartite network, a bipartite network consists of two

sets of non-overlapping nodes, and links can only exist

between two nodes from distinct sets. The adjacency matrix

A of a bipartite network is with order M � N, where M and

N are the number of vertices in these two distinct sets. In

this paper, we call these two types of nodes as top and bot-

tom nodes, respectively. If there is a link between vertices i
in the top set and j in the bottom set, the element Aij ¼ 1,

otherwise Aij ¼ 0. In bipartite networks, the random walk

process is closely related to the information filtering algo-

rithms.37,38 Unlike monopartite networks, there are two sto-

chastic matrices for random walk in bipartite networks. If a

walker goes from the top set to the bottom set, the process

is described by the stochastic matrix U with order M � N.
In U, the element Uij ¼ Aij=ki. If the walker is from the bot-

tom set to the top set, then the stochastic matrix V is with

order N �M and element Vij ¼ Aji=ki. U and V contain all

the information of random walk in a bipartite network.

Furthermore, we define two new matrices Wm and Wn

as: Wm ¼ U� V and Wn ¼ V� U. Just like the stochastic

matrix in monopartite networks, Wm and Wn are square mat-

rices. Wm(Wn) describes the random walkers going from top

(bottom) nodes to top (bottom) nodes. These two matrices

have some interesting properties. In particular, the largest

eigenvalue of these two matrices is equal to 1 and the ele-

ments of the corresponding eigenvector are equal. Moreover,

there are several largest eigenvalues of these two matrices

with the same value. As discussed in Ref. 21, eigenvectors

corresponding to the eigenvalues close to 1 of the stochastic

matrixW capture the large-scale behavior of the random walk

in monopartite networks. The fact is also true in Wm and Wn

in bipartite networks since they are square matrices just like

W. Therefore, our goal is to preserve the largest nontrivial

eigenvalues of Wm and Wn. In this way, we can preserve the

properties of random walk in bipartite networks.

C. Spectral coarse graining method for bipartite
networks

Now we describe the new coarse graining method. We

denote the eigenvalues of a matrix Wm or Wn as ka and their

corresponding eigenvectors ~pa. First of all, two nodes i and j
with exactly the same neighbors should be merged since

they cannot be distinguished from the point of view of ran-

dom walk. In the eigenvector ~pa for any ka 6¼ 0 of Wm or

Wn, p
i
a ¼ pja. After merging, the new node will carry all the

edges of nodes i and j and the resulting adjacency matrix of

a bipartite network ~A will have order ðM � 1Þ � N or

M � ðN � 1Þ, with the corresponding row or column of the

new node being the sum of the row (column) i and j. The
properties of random walk in the new bipartite network are

exactly the same as those in the original network. Moreover,

if pia � pja we could also group them in order to obtain

an even smaller bipartite network. By definition, if jpia � pjaj
/ � we could group node i and j together. Like Refs. 20 and

21, the condition jpia � pjaj / � can be implemented by defin-

ing a parameter I as the number of equally distributed inter-

vals between the minimum and the maximum components of

each eigenvector ~p. The nodes whose eigenvector compo-

nents in~p fall in the same interval should be grouped.

We summarize the bipartite network spectral coarse

graining (BSCG) method in the following procedures:

1. For any given bipartite network A, we can get two sto-

chastic matrices U and V which gives the transition prob-

ability from the top nodes to bottom nodes and bottoms

nodes to top nodes, respectively;

2. Based on U and V, we can obtain two square stochastic

matrices Wm ¼ U� V and Wn ¼ V� U.

3. We calculate the eigenvalues ka and the corresponding

eigenvectors ~pa of bothWm and Wn;

4. We merge nodes with similar components in the~pa as one
node. In the new adjacency matrix ~A, this node will carry
the sum of the edges of original nodes. The nodes in the

top set should be merged based on the eigenvectors of

Wm and the nodes in the bottom set should be merged

based on the eigenvectors ofWn.

Unlike the original network, the reduced network is a

weighted one. Though the low-strength links play a less sig-

nificant role in the random walk process, they must exit to

make the reduced network connected. The new stochastic

matrices ~U and ~V are calculated as ~Uij ¼ ~Aij=
P

j
~Aij and

~Vij ¼ ~Aji=
P

j
~Aji. This method can be further extended to

more than one eigenvector. In this case, groups are defined

as nodes with almost the same components in the eigenvec-

tors corresponding to the largest nontrivial eigenvalues. It

turns out that choosing several largest nontrivial eigenvalues

could better preserve the properties of random walk in bipar-

tite network.

III. RESULTS

To validate our method, we apply it to both artificial and

real-world bipartite networks.

A. Artificial networks

To begin with, we consider an artificial bipartite network

with 1200 vertices which are divided into 2 sets. The top set

has 300 vertices and the bottom set has 900 vertices. We

divide nodes into 10 groups with the same size, such that each

group has 30 vertices from the top set and 90 vertices from

the bottom set. The probability for having a link between each
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pair of nodes in the same group is q1, and q2 is the corre-

sponding probability between groups. In this section, q1
¼ 0:4 and q2 ¼ 0:05. Since this kind of artificial network has

obvious community structure, we call them community net-

works. Using the clustering method in original bipartite net-

work,13 we can correctly detect 10 communities from the

network.

To coarse grain this bipartite network, we used the eigen-

vectors (~p2, ~p3, and ~p4) of the three largest nontrivial eigen-

values. We set I ¼ 12, which means the interval between the

largest and the smallest components of each eigenvector into

12 equal parts. Using the BSCG method, we get a rather

small network with 391 vertices. Since the BSCG method

and community detection methods focus on different proper-

ties of the bipartite network, the grouping results are differ-

ent. Here, we compare the BSCG method to a typical CD

method in Ref. 13. The random coarse graining (RCG)

method is also carried out for comparison. Table I shows the

three largest nontrivial eigenvalues of Wm before and after

coarse graining (the three largest nontrivial eigenvalues of

Wm andWn are the same). Obviously, the largest three eigen-

values are effectively preserved by the BSCG method in the

coarse-grained network. However, these eigenvalues are

largely changed if the network is coarse grained by the CD or

RCG method.

Moreover, we also apply the BSCG method to ER bipar-

tite networks and obtain similar results (see also Table I). In

ER bipartite networks, the probability for having a link

between two vertices of different sets is 0.01 and the top set

contains 1000 vertices while bottom set has 800 vertices. We

also focus on the eigenvectors of the three largest nontrivial

eigenvalues and set I¼ 20. The results in Table I indicate

that our new method is robust in various kinds of artificial

networks.

B. Real-world bipartite networks

In this subsection, we apply our method to some real-

world networks. First, we use a social network of terrorists.

The data, collected from 430 websites, were based on the

relationship between terrorists and their organizations. The

network was sampled from the data collected over a period

from Oct. 1st, 1949 to May 1st, 2012. In this small social net-

work, we focus on the giant component which is composed

of 73 nodes in total, including 20 organizations and 53 peo-

ple. The structure of the original network can be seen in the

top figure of Fig. 1, where the blue squares account for people

and the red circles represent the organizations. The links

between two nodes indicate that a person belongs to an orga-

nization. To coarse grain this network, we set I ¼ 5 and

obtain a reduced network with 23 nodes, which is shown in

the bottom figure of Fig. 1. The three largest nontrivial eigen-

values before and after coarse graining are reported in Table

II. Clearly, all these eigenvalues are kept almost unchanged.

Moreover, the bipartite structure of the original network is

well preserved as shown in Fig. 1. We also try the method

introduced in Ref. 21 on this real-world network, the resulting

network is a monopartite one and the original two different

kinds of nodes are indistinguishable.

As a further step, we apply our method to two online

commercial networks: MovieLens and Netflix. The movie-

lens network was sampled from the data collected over a

seven-month period from September 19th, 1997 through

April 22nd, 1998. The data consisted of 100 000 movie rat-

ings from 943 users on 1682 items. Each user sampled had

rated at least 20 items. Users can vote for movies with five

level ratings from 1 (i.e., worst) to 5 (i.e., best). Here we only

consider the ratings higher than 2, so that the final data con-

tain 82 520 user-object pairs. This sampled data are freely

available at Ref. 41. The Netflix network was randomly

sampled from the very large data set provided for the Netflix

Prize. The original data are freely available at Ref. 42. It has

480 189 users, 17 770 items and 100 480 507 ratings. In the

paper, we only consider a subset of this very large data set.

The subset consists of 3000 users, 2779 movies, and 824 802

TABLE I. The three largest nontrivial eigenvalues of Wm in the artificial

networks including the bipartite network with community structure and the

ER bipartite network. ka and ~ka are the eigenvalues before and after coarse

graining, respectively.

Network a ka ~ka (BSCG) ~ka (CD) ~ka (RCG)

Community network 2 0.4405 0.4336 0.4051 0.0924

3 0.4342 0.4279 0.3920 0.0824

4 0.4180 0.4076 0.3809 0.0792

ER network 2 0.3986 0.3933 0.1812 0.1097

3 0.3908 0.3833 0.1717 0.1065

4 0.3865 0.3784 0.1690 0.1037

FIG. 1. The top figure is a social bipartite network of terrorists with

N þM ¼ 73. Nodes’ size is proportional to their degree. The two different

colors represent the two kinds of vertices. The blue squares stand for people

and the red circles represent the organizations. The bottom figure is the

coarse-grained network from the BSCG method with N þM ¼ 23. Nodes’

size is proportional to its strength in this weighted network.
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links. Similarly to the MovieLens data, only the links with

ratings no less than 3 are considered. After data filtering,

there are 197 428 links left in the Netflix network.

We first investigate how these three nontrivial eigenval-

ues evolve when the nodes in the networks are merged.

Fig. 2 shows the change of these eigenvalues as a function of

network size NþM. The red line corresponds to a random

merging of the nodes into groups, the green line is the result

of community detection method, and the blue line shows the

results of the BSCG method in which ~p2, ~p3, and ~p4 are con-
sidered. The different values of network size N þ M corre-

spond to different choices of the number of intervals I.
Generally speaking, a small I yields a small network size. As

shown in Fig. 2, these three eigenvalues are well preserved

in BSCG method even though the network size is signifi-

cantly reduced. Actually, I can be regarded as a parameter to

determine how accurate the eigenvalues are expected to be

preserved, larger I can improve the precision of the method

while resulting a bigger size of the reduced network.

In Fig. 2, it is also clearly shown that if nodes are merged

randomly or according to the community detection method,

the eigenvalues change dramatically. Consequently, the

properties of random walk will be significantly changed. In

order to keep eigenvalues almost unchanged, we set I ¼ 12 in

the BSCG method and get a reduced movielens network with

size N þM ¼ 500, which is 20% as big as the original net-

work. In Netflix network, we set I ¼ 60 and finally 657 nodes

are left, which is about 10% as big as the size of the original

network. The three largest eigenvalues in the both reduced

networks can be seen in Table II.

A more direct test of our method is to compare the first

passage time (MFPT) from node i to node j, which is denoted

by Tij in the original and reduced networks. We label the

nodes in the bipartite network from 1 to N0(N0 ¼ N þM) and

consider the bipartite network as a monopartite one. In this

way, all the cases for random walk in bipartite networks are

included, i.e., the random walker can start from one type of

nodes and finally arrive at either the same type or the other

type of nodes. We consider the multi-sink random walk prob-

lem34,39 and the MFPT can be exactly calculated by Eq. (3).

In order to compare the MFPT between the original and

reduced networks in movielens, we use the coarse grained

network with N0 ¼ 500 obtained above. Specifically, we con-

sider that the walker starts at each node in the top set and

define the node i with the largest strength as the sink in the

TABLE II. The three largest nontrivial eigenvalues of Wm in real-world bi-

partite networks including a small terrorists’ social network, movielens net-

work, and Netflix network. ka and ~ka are, respectively, the eigenvalues

before and after coarse graining.

Network a ka ~ka (BSCG) ~ka (CD) ~ka (RCG)

Terrorists 2 0.8070 0.8059 0.7132 0.3781

3 0.7259 0.7256 0.5639 0.2647

4 0.6013 0.5732 0.5000 0.1868

Movielens 2 0.4180 0.4093 0.3195 0.0246

3 0.2436 0.2305 0.1055 0.0173

4 0.2075 0.1890 0.0864 0.0153

Netflix 2 0.2575 0.2535 0.1369 0.0139

3 0.2209 0.2168 0.1313 0.0132

4 0.2148 0.1971 0.1271 0.0115

FIG. 2. The evolution of the three largest nontrivial eigenvalues k2, k3, and k4 as a function of the size of the coarse-grained network. (a)–(c) The original net-

work is movielens network. (d)–(f) The original network is Netflix network. Red circles correspond to the random coarse graining method, the green line is the

community detection method, and the blue squares represent the BSCG method.
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bottom set. In Fig. 3(a), blue circles represent the MFPT

from each node in the top set to nodes belonging to the group

i in the bottom set in the original network. The MFPT to the

group i in the bottom set in the reduced network is displayed

with red lines. The exact overlap indicates that the MFPT is

well preserved in the reduced network. The inset of Fig. 3(a)

shows the relationship between the MFPT of the original net-

work and that of the reduced network. The result implies

almost equal MFPT in the original and the reduced network,

given the same the source node and the sink. The slope of

the curve is 0.996 and the goodness of linear fit is

R2 ¼ 0:998. However, the random coarse graining method

significantly destroys the MFPT. As shown in Fig. 3(b), the

MFPT between original network and reduced network differs

from each other. From the inset of Fig. 3(b), it is shown that

there is no significant relationship between these two MFPT.

Compared to the random coarse graining, the community

detection performs slightly better. However, we can still

observe that the red line and blue line do not overlap well.

We further test the MFPT in the Netflix network and its

coarse gained networks from BSCG method, CD, and RCG

method. Similar results are obtained (see Figs. 3(d)–3(f)).

Besides computing the exact MFPT from Eq. (3), we

also use the numerical simulation of the random walk pro-

cess to test the BSCG method. Specifically, we put a walker

on each node in the bipartite network and let it travel based

on the stochastic matrices (U and V). Similar results to Fig.

3 are obtained, namely the reduced network from the BSCG

method effectively preserves the MFPT while the CD and

RCG methods significantly change the MFPT. Finally, we

remark that the results in Fig. 3 are consistent in different

choices of sinks. No matter whether the walker starts and

ends at nodes in the same or different set of nodes, the

MFPT line of the reduced network from BSCG method well

overlaps with that of the original network.

In real application, the computational complexity of the

method is a crucial factor. Any coarse graining method will

become meaningless if the consuming time is unacceptable.

Generally, the time complexity for calculating all the eigen-

values and eigenvectors of a matrix is OðN3Þ. However, in
our algorithm, we only use the largest three nontrivial eigen-

vectors. These eigenvectors are quite fast to calculate using

the power method for sparse matrices,6 in time OðN2Þ. Even
if we want to know all the eigenvalues and eigenvectors,

combining the Lanczos and QL algorithms, these eigenvec-

tors of a sparse symmetric matrix can be obtained in time

O(NE), where E is the number of links in the network. A

similar method, the Arnoldi algorithm, can be used for an

asymmetric matrix.6 On the other hand, if we directly run the

random walk process on the original network, the computa-

tional complexity for calculating the MFPT is OðN3Þ. There-
fore, our coarse graining method is meaningful in practical

use, especially for large and sparse bipartite networks.

We finally consider the robustness of our method. Spe-

cifically, a robust spectral-based coarse graining method

should be able to preserve the network function even when

the considered eigenvalues cannot fully represent the proper-

ties of the whole network (i.e., the eigenvalues used for

FIG. 3. Comparison of the MFPT. The walker starts at each node in the top set and the sink i is selected as the node with the strongest weight in the bottom

set. The blue circles represent the average MFPT ranked for each group in the original network. The MFPT of the corresponding nodes in the coarse-grained

network is displayed with red lines. (a) Nodes merged by BSCG method in Movielens network. (b) Nodes merged randomly in Movielens network. (c) Nodes

merged based on community detection method in Movielens network. (d) Nodes merged by BSCG method in Netflix network. (e) Nodes merged randomly in

Netflix network. (f) Nodes merged based on community detection method in Netflix network. Insets: Comparison of the exact MFPT between original and the

reduced bipartite network. Slope 1 represents the well preserved MFPT in the reduced network.
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coarse graining is not separated enough from the next few

ones). We use the artificial network with community struc-

ture in Sec. III A to modify the gap between eigenvalues.

The results show that the BSCG method can still effectively

preserve the eigenvalues and MFPT when the size and loca-

tion of the gap are changed.

IV. CONCLUSION

One of the most difficult hurdles in the analysis of com-

plex network is the very large size of the real-world systems.

If the network has more than 105 nodes, many algorithms are

significantly slow and sometimes the application is even pro-

hibitive. In order to solve this challenge, some coarse grai-

ning method for complex networks has been proposed.

These methods mainly focus on the monopartite network in

which only one type of nodes exist.

In this paper, we proposed a new coarse grain method

for bipartite network. After introducing two square stochastic

matrices Wm and Wn, we find that their three largest nontri-

vial eigenvalues can effectively represent the properties of

random walks. After merging nodes with similar components

in the eigenvectors of these eigenvalues, the reduced network

with well preserved eigenvalues of stochastic matrix is

obtained. Moreover, a direct test based on the mean first pas-

sage time is carried out in two real-world bipartite networks,

showing that this property is also well preserved in the

reduced network. We believe that this method can be easily

extended to preserve many other spectral-determined dynam-

ical properties in bipartite networks. Finally, we remark that

for a bipartite network the coarse graining provides a highly

representative approximation of the initial network, resulting

a way to circumvent the large size of complex networks for

their analysis and visualization.
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