84 research outputs found

    ROS in cancer therapy: the bright side of the moon.

    Get PDF
    Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. It is now well accepted that moderate levels of ROS are required for several cellular functions, including gene expression. The production of ROS is elevated in tumor cells as a consequence of increased metabolic rate, gene mutation and relative hypoxia, and excess ROS are quenched by increased antioxidant enzymatic and nonenzymatic pathways in the same cells. Moderate increases of ROS contribute to several pathologic conditions, among which are tumor promotion and progression, as they are involved in different signaling pathways and induce DNA mutation. However, ROS are also able to trigger programmed cell death (PCD). Our review will emphasize the molecular mechanisms useful for the development of therapeutic strategies that are based on modulating ROS levels to treat cancer. Specifically, we will report on the growing data that highlight the role of ROS generated by different metabolic pathways as Trojan horses to eliminate cancer cells

    The crosstalk between prostate cancer and microbiota inflammation: Nutraceutical products are useful to balance this interplay?

    Get PDF
    The human microbiota shows pivotal roles in urologic health and disease. Emerging studies indicate that gut and urinary microbiomes can impact several urological diseases, both benignant and malignant, acting particularly on prostate inflammation and prostate cancer. Indeed, the microbiota exerts its influence on prostate cancer initiation and/or progression mechanisms through the regulation of chronic inflammation, apoptotic processes, cytokines, and hormonal production in response to different pathogenic noxae. Additionally, therapies’ and drugs’ responses are influenced in their efficacy and tolerability by microbiota composition. Due to this complex potential interconnection between prostate cancer and microbiota, exploration and understanding of the involved relationships is pivotal to evaluate a potential therapeutic application in clinical practice. Several natural compounds, moreover, seem to have relevant effects, directly or mediated by microbiota, on urologic health, posing the human microbiota at the crossroad between prostatic inflammation and prostate cancer development. Here, we aim to analyze the most recent evidence regarding the possible crosstalk between prostate, microbiome, and inflammation

    Activation of Kv7 potassium channels inhibits intracellular Ca2+ increases triggered by TRPV1-mediated pain-inducing stimuli in F11 immortalized sensory neurons

    Get PDF
    Kv7.2-Kv7.5 channels mediate the M-current (IKM), a K+-selective current regulating neuronal excitability and representing an attractive target for pharmacological therapy against hyperexcitability diseases such as pain. Kv7 channels interact functionally with transient receptor potential vanilloid 1 (TRPV1) channels activated by endogenous and/or exogenous pain-inducing substances, such as bradykinin (BK) or capsaicin (CAP), respectively; however, whether Kv7 channels of specific molecular composition provide a dominant contribution in BK- or CAP-evoked responses is yet unknown. To this aim, Kv7 transcripts expression and function were assessed in F11 immortalized sensorial neurons, a cellular model widely used to assess nociceptive molecular mechanisms. In these cells, the effects of the pan-Kv7 activator retigabine were investigated, as well as the effects of ICA-27243 and (S)-1, two Kv7 activators acting preferentially on Kv7.2/Kv7.3 and Kv7.4/Kv7.5 channels, respectively, on BK- and CAP-induced changes in intracellular Ca2+ concentrations ([Ca2+]i). The results obtained revealed the expression of transcripts of all Kv7 genes, leading to an IKM-like current. Moreover, all tested Kv7 openers inhibited BK- and CAP-induced responses by a similar extent (~60%); at least for BK-induced Ca2+ responses, the potency of retigabine (IC50~1 ”M) was higher than that of ICA-27243 (IC50~5 ”M) and (S)-1 (IC50~7 ”M). Altogether, these results suggest that IKM activation effectively counteracts the cellular processes triggered by TRPV1-mediated pain-inducing stimuli, and highlight a possible critical contribution of Kv7.4 subunits

    Kaempferol, myricetin and fisetin in prostate and bladder cancer: A systematic review of the literature

    Get PDF
    Prostate and bladder cancer represent the two most frequently diagnosed genito-urinary malignancies. Diet has been implicated in both prostate and bladder cancer. Given their prolonged latency and high prevalence rates, both prostate and bladder cancer represent attractive candidates for dietary preventive measures, including the use of nutritional supplements. Flavonols, a class of flavonoids, are commonly found in fruit and vegetables and are known for their protective effect against diabetes and cardiovascular diseases. Furthermore, a higher dietary intake of flavonols was associated with a lower risk of both bladder and prostate cancer in epidemiological studies. In this systematic review, we gathered all available evidence supporting the anti-cancer potential of selected flavonols (kaempferol, fisetin and myricetin) against bladder and prostate cancer. A total of 21, 15 and 7 pre-clinical articles on bladder or prostate cancer reporting on kaempferol, fisetin and myricetin, respectively, were found, while more limited evidence was available from animal models and epidemiological studies or clinical trials. In conclusion, the available evidence supports the potential use of these flavonols in prostate and bladder cancer, with a low expected toxicity, thus providing the rationale for clinical trials that explore dosing, settings for clinical use as well as their use in combination with other pharmacological and non-pharmacological interventions

    The Impact of Meat Intake on Bladder Cancer Incidence: Is It Really a Relevant Risk?

    Get PDF
    Bladder cancer (BC) represents the second most common genitourinary malignancy. The major risk factors for BC include age, gender, smoking, occupational exposure, and infections. The BC etiology and pathogenesis have not been fully defined yet. Since catabolites are excreted through the urinary tract, the diet may play a pivotal role in bladder carcinogenesis. Meat, conventionally classified as "red", "white" or "processed", represents a significant risk factor for chronic diseases like cardiovascular disease, obesity, type 2 diabetes, and cancer. In particular, red and processed meat consumption seems to increase the risk of BC onset. The most accepted mechanism proposed for explaining the correlation between meat intake and BC involves the generation of carcinogens, such as heterocyclic amines and polycyclic aromatic hydrocarbons by high-temperature cooking. This evidence claims the consumption limitation of meat. We reviewed the current literature on potential biological mechanisms underlying the impact of meat (red, white, and processed) intake on the increased risk of BC development and progression. Toward this purpose, we performed an online search on PubMed using the term "bladder cancer" in combination with "meat", "red meat", "white meat" or "processed meat". Although some studies did not report any association between BC and meat intake, several reports highlighted a positive correlation between red or processed meat intake, especially salami, pastrami, corned beef and bacon, and BC risk. We speculate that a reduction or rather a weighting of the consumption of red and processed meat can reduce the risk of developing BC. Obviously, this remark claims future indications regarding food education (type of meat to be preferred, quantity of red meat to be eaten and how to cook it) to reduce the risk of developing BC. Further well-designed prospective studies are needed to corroborate these findings

    One week of levofloxacin plus dexamethasone eye drops for cataract surgery: an innovative and rational therapeutic strategy

    Get PDF
    Background: Cataract surgery is the most common operation performed worldwide. A fixed topical corticosteroid-antibiotic combination is usually prescribed in clinical practice for 2 or more weeks to treat post surgical inflammation and prevent infection. However, this protracted schedule may increase the incidence of corticosteroid-related adverse events and notably promote antibiotic resistance. Methods: This International, multicentre, randomized, blinded-assessor, parallel-group clinical study evaluated the non-inferiority of 1-week levofloxacin/dexamethasone eye drops, followed by 1-week dexamethasone alone, vs. 2-week gold-standard tobramycin/dexamethasone (one drop QID for all schedules) to prevent and treat ocular inflammation and prevent infection after uncomplicated cataract surgery. Non-inferiority was defined as the lower limit of the 95% confidence interval (CI) around a treatment difference >\u201310%. The study randomized 808 patients enrolled in 53 centres (Italy, Germany, Spain and Russia). The primary endpoint was the proportion of patients without anterior chamber inflammation on day 15 defined as the end of treatment. Endophthalmitis was the key secondary endpoint. This study is registered with EudraCT code: 2018-000286-36. Results: After the end of treatment, 95.2% of the patients in the test arm vs. 94.9% of the control arm had no signs of inflammation in the anterior chamber (difference between proportions of patients = 0.028; 95% CI: 120.0275/0.0331). No case of endophthalmitis was reported. No statistically significant difference was evident in any of the other secondary endpoints. Both treatments were well tolerated. Conclusions: Non-inferiority of the new short pharmacological strategy was proven. One week of levofloxacin/dexamethasone prevents infection, ensures complete control of inflammation in almost all patients and may contain antibiotic resistance

    Evolution of Multilevel Social Systems in Nonhuman Primates and Humans

    Full text link

    The p85 Regulatory Subunit of PI3K Mediates cAMP–PKA and Insulin Biological Effects on MCF-7 Cell Growth and Motility.

    No full text
    Background: Phosphatidylinositol 3-kinase (PI3K) is necessary for insulin action on glucose and lipid metabolism. In epithelial cells, which do not express GLUT4 and gluconeogenic enzymes, insulin mediated PI3K activation regulates cell survival, growth, proliferation and motility. Although the involvement of p85αregulatory subunit of PI3K (p85αPI3K) in insulin signal transduction has been extensively studied, the function of the N-terminus of p85αPI3K remains elusive. A serine at codon 83 (S83) in the p85αPI3K that is phosphorylated by protein kinase A (PKA) invivo and in vitrohas been identified. Methods: To determine the molecular mechanism linking PKA to insulin mediated PI3K activation in MCF7 cells, we used p85αPI3K mutated forms, in which S83 has been substituted with alanine (p85A) to prevent phosphorylation or with aspartic acid (p85D) to mimic the phosphorylated residue. Results: We demonstrated that phosphorylation of p85αPI3KS83 modulates the formation of the p85αPI3K/IRS1 complex and its subcellular localization influencing the kinetics of the insulin signaling both on MAPK-ERK and AKT pathways. Growth curves and cell cycle analysis demonstrated that phosphorylation of p85αPI3KS83 plays a central role in the control of insulin mediated cell proliferation. Conclusions:In conclusion, the insulin-modulated plating efficiency and cell migration were markedly influenced by the expression of the p85αPI3KS83 mutants
    • 

    corecore