286 research outputs found

    An RNA Polymerase III General Transcription Factor Engages in Cell Type-Specific Chromatin Looping

    Get PDF
    Transcription factors (TFs) bind DNA in a sequence-specific manner and are generally cell type-specific factors and/or developmental master regulators. In contrast, general TFs (GTFs) are part of very large protein complexes and serve for RNA polymerases’ recruitment to promoter sequences, generally in a cell type-independent manner. Whereas, several TFs have been proven to serve as anchors for the 3D genome organization, the role of GTFs in genome architecture have not been carefully explored. Here, we used ChIP-seq and Hi-C data to depict the role of TFIIIC, one of the RNA polymerase III GTFs, in 3D genome organization. We find that TFIIIC genome occupancy mainly occurs at specific regions, which largely correspond to Alu elements; other characteristic classes of repetitive elements (REs) such as MIR, FLAM-C and ALR/alpha are also found depending on the cell’s developmental origin. The analysis also shows that TFIIIC-enriched regions are involved in cell type-specific DNA looping, which does not depend on colocalization with the master architectural protein CTCF. This work extends previous knowledge on the role of TFIIIC as a bona fide genome organizer whose action participates in cell type-dependent 3D genome looping via binding to REs

    Thick-film gas sensors based on vanadium-titanium oxide powders prepared by sol-gel synthesis

    Get PDF
    Two titania powders modified by 10 at.% of vanadium were prepared by two different sol-gel routes. The powders fired at 650 °C had the rutile structure. These powders were used to produce prototype thick-film sensors. Four series of thick-film samples were fabricated by screen-printing, fired for 1 h at 650 and 850 °C. The morphology and gas-sensing properties were examined and compared with those of pure and Ta-added titania films, previously studied by the authors. Ta addition inhibited the anatase-to-rutile phase transformation during heating and was also effective in keeping the TiO2 grain size in the nanometre range. On the contrary, V addition facilitated the anatase-to-rutile phase transformation. Thick films obtained from the two powders had similar conductance behaviour vs. temperature. The gas response of the films was affected by both the grain size and firing temperature. © 2003 Elsevier Ltd. All rights reserved

    VEGF-A/VEGFR-1 signalling and chemotherapy-induced neuropathic pain: therapeutic potential of a novel anti-VEGFR-1 monoclonal antibody

    Get PDF
    Background Neuropathic pain is a clinically relevant adverse effect of several anticancer drugs that markedly impairs patients' quality of life and frequently leads to dose reduction or therapy discontinuation. The poor knowledge about the mechanisms involved in neuropathy development and pain chronicization, and the lack of effective therapies, make treatment of chemotherapy-induced neuropathic pain an unmet medical need. In this context, the vascular endothelial growth factor A (VEGF-A) has emerged as a candidate neuropathy hallmark and its decrease has been related to pain relief. In the present study, we have investigated the role of VEGF-A and its receptors, VEGFR-1 and VEGFR-2, in pain signalling and in chemotherapy-induced neuropathy establishment as well as the therapeutic potential of receptor blockade in the management of pain. Methods Behavioural and electrophysiological analyses were performed in an in vivo murine model, by using selective receptor agonists, blocking monoclonal antibodies or siRNA-mediated silencing of VEGF-A and VEGFRs. Expression of VEGF-A and VEGFR-1 in astrocytes and neurons was detected by immunofluorescence staining and confocal microscopy analysis. Results In mice, the intrathecal infusion of VEGF-A (VEGF(165) isoforms) induced a dose-dependent noxious hypersensitivity and this effect was mediated by VEGFR-1. Consistently, electrophysiological studies indicated that VEGF-A strongly stimulated the spinal nociceptive neurons activity through VEGFR-1. In the dorsal horn of the spinal cord of animals affected by oxaliplatin-induced neuropathy, VEGF-A expression was increased in astrocytes while VEGFR-1 was mainly detected in neurons, suggesting a VEGF-A/VEGFR-1-mediated astrocyte-neuron cross-talk in neuropathic pain pathophysiology. Accordingly, the selective knockdown of astrocytic VEGF-A by intraspinal injection of shRNAmir blocked the development of oxaliplatin-induced neuropathic hyperalgesia and allodynia. Interestingly, both intrathecal and systemic administration of the novel anti-VEGFR-1 monoclonal antibody D16F7, endowed with anti-angiogenic and antitumor properties, reverted oxaliplatin-induced neuropathic pain. Besides, D16F7 effectively relieved hypersensitivity induced by other neurotoxic chemotherapeutic agents, such as paclitaxel and vincristine. Conclusions These data strongly support the role of the VEGF-A/VEGFR-1 system in mediating chemotherapy-induced neuropathic pain at the central nervous system level. Thus, treatment with the anti-VEGFR-1 mAb D16F7, besides exerting antitumor activity, might result in the additional advantage of attenuating neuropathic pain when combined with neurotoxic anticancer agents

    VEGF-A/VEGFR-1 signalling and chemotherapy-induced neuropathic pain: therapeutic potential of a novel anti-VEGFR-1 monoclonal antibody

    Get PDF
    Abstract Background Neuropathic pain is a clinically relevant adverse effect of several anticancer drugs that markedly impairs patients’ quality of life and frequently leads to dose reduction or therapy discontinuation. The poor knowledge about the mechanisms involved in neuropathy development and pain chronicization, and the lack of effective therapies, make treatment of chemotherapy-induced neuropathic pain an unmet medical need. In this context, the vascular endothelial growth factor A (VEGF-A) has emerged as a candidate neuropathy hallmark and its decrease has been related to pain relief. In the present study, we have investigated the role of VEGF-A and its receptors, VEGFR-1 and VEGFR-2, in pain signalling and in chemotherapy-induced neuropathy establishment as well as the therapeutic potential of receptor blockade in the management of pain. Methods Behavioural and electrophysiological analyses were performed in an in vivo murine model, by using selective receptor agonists, blocking monoclonal antibodies or siRNA-mediated silencing of VEGF-A and VEGFRs. Expression of VEGF-A and VEGFR-1 in astrocytes and neurons was detected by immunofluorescence staining and confocal microscopy analysis. Results In mice, the intrathecal infusion of VEGF-A (VEGF165 isoforms) induced a dose-dependent noxious hypersensitivity and this effect was mediated by VEGFR-1. Consistently, electrophysiological studies indicated that VEGF-A strongly stimulated the spinal nociceptive neurons activity through VEGFR-1. In the dorsal horn of the spinal cord of animals affected by oxaliplatin-induced neuropathy, VEGF-A expression was increased in astrocytes while VEGFR-1 was mainly detected in neurons, suggesting a VEGF-A/VEGFR-1-mediated astrocyte-neuron cross-talk in neuropathic pain pathophysiology. Accordingly, the selective knockdown of astrocytic VEGF-A by intraspinal injection of shRNAmir blocked the development of oxaliplatin-induced neuropathic hyperalgesia and allodynia. Interestingly, both intrathecal and systemic administration of the novel anti-VEGFR-1 monoclonal antibody D16F7, endowed with anti-angiogenic and antitumor properties, reverted oxaliplatin-induced neuropathic pain. Besides, D16F7 effectively relieved hypersensitivity induced by other neurotoxic chemotherapeutic agents, such as paclitaxel and vincristine. Conclusions These data strongly support the role of the VEGF-A/VEGFR-1 system in mediating chemotherapy-induced neuropathic pain at the central nervous system level. Thus, treatment with the anti-VEGFR-1 mAb D16F7, besides exerting antitumor activity, might result in the additional advantage of attenuating neuropathic pain when combined with neurotoxic anticancer agents

    Uniparental markers of contemporary Italian population reveals details on its pre-Roman heritage.

    Get PDF
    BACKGROUND: According to archaeological records and historical documentation, Italy has been a melting point for populations of different geographical and ethnic matrices. Although Italy has been a favorite subject for numerous population genetic studies, genetic patterns have never been analyzed comprehensively, including uniparental and autosomal markers throughout the country. METHODS/PRINCIPAL FINDINGS: A total of 583 individuals were sampled from across the Italian Peninsula, from ten distant (if homogeneous by language) ethnic communities--and from two linguistic isolates (Ladins, Grecani Salentini). All samples were first typed for the mitochondrial DNA (mtDNA) control region and selected coding region SNPs (mtSNPs). This data was pooled for analysis with 3,778 mtDNA control-region profiles collected from the literature. Secondly, a set of Y-chromosome SNPs and STRs were also analyzed in 479 individuals together with a panel of autosomal ancestry informative markers (AIMs) from 441 samples. The resulting genetic record reveals clines of genetic frequencies laid according to the latitude slant along continental Italy--probably generated by demographical events dating back to the Neolithic. The Ladins showed distinctive, if more recent structure. The Neolithic contribution was estimated for the Y-chromosome as 14.5% and for mtDNA as 10.5%. Y-chromosome data showed larger differentiation between North, Center and South than mtDNA. AIMs detected a minor sub-Saharan component; this is however higher than for other European non-Mediterranean populations. The same signal of sub-Saharan heritage was also evident in uniparental markers. CONCLUSIONS/SIGNIFICANCE: Italy shows patterns of molecular variation mirroring other European countries, although some heterogeneity exists based on different analysis and molecular markers. From North to South, Italy shows clinal patterns that were most likely modulated during Neolithic times

    High Differentiation among Eight Villages in a Secluded Area of Sardinia Revealed by Genome-Wide High Density SNPs Analysis

    Get PDF
    To better design association studies for complex traits in isolated populations it's important to understand how history and isolation moulded the genetic features of different communities. Population isolates should not “a priori” be considered homogeneous, even if the communities are not distant and part of a small region. We studied a particular area of Sardinia called Ogliastra, characterized by the presence of several distinct villages that display different history, immigration events and population size. Cultural and geographic isolation characterized the history of these communities. We determined LD parameters in 8 villages and defined population structure through high density SNPs (about 360 K) on 360 unrelated people (45 selected samples from each village). These isolates showed differences in LD values and LD map length. Five of these villages show high LD values probably due to their reduced population size and extreme isolation. High genetic differentiation among villages was detected. Moreover population structure analysis revealed a high correlation between genetic and geographic distances. Our study indicates that history, geography and biodemography have influenced the genetic features of Ogliastra communities producing differences in LD and population structure. All these data demonstrate that we can consider each village an isolate with specific characteristics. We suggest that, in order to optimize the study design of complex traits, a thorough characterization of genetic features is useful to identify the presence of sub-populations and stratification within genetic isolates

    Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity

    Get PDF
    In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process
    corecore