2,000 research outputs found
Interferometric length metrology for the dimensional control of ultra-stable Ring Laser Gyroscopes
We present the experimental test of a method for controlling the absolute
length of the diagonals of square ring laser gyroscopes. The purpose is to
actively stabilize the ring cavity geometry and to enhance the rotation sensor
stability in order to reach the requirements for the detection of the
relativistic Lense-Thirring effect with a ground-based array of optical
gyroscopes. The test apparatus consists of two optical cavities 1.32 m in
length, reproducing the features of the ring cavity diagonal resonators of
large frame He-Ne ring laser gyroscopes. The proposed measurement technique is
based on the use of a single diode laser, injection locked to a frequency
stabilized He-Ne/Iodine frequency standard, and a single electro-optic
modulator. The laser is modulated with a combination of three frequencies
allowing to lock the two cavities to the same resonance frequency and, at the
same time, to determine the cavity Free Spectral Range (FSR). We obtain a
stable lock of the two cavities to the same optical frequency reference,
providing a length stabilization at the level of 1 part in , and the
determination of the two FSRs with a relative precision of 0.2 ppm. This is
equivalent to an error of 500 nm on the absolute length difference between the
two cavities
Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field
The harvested biomass of switchgrass (Panicum virgatum L.) is generally much lower than its potential; this may be due to several factors including not recovering all the biomass at harvest, weed competition, pests, disease and spatial variation of soil features. The objective of this research was to quantify the yield spatial variation of switchgrass and relate it to soil parameters, in a field of about 5 ha, in 2004 and 2005. Several thematic maps of soil parameters and biomass yield were produced using GIS and geostatistical methods. Soil parameters changed consistently within very short distances and biomass yield varied from 3 to more than 20 Mg ha(-1). This remarkable variation indicates that the potential for increasing switchgrass productivity is a real prospect. Furthermore, spatial variation of yield showed similar patterns in the 2 years (r = 0.38**), and therefore a major influence of site characteristics on switchgrass yield can be assumed to occur. Significant correlations were found between biomass yield and soil N, P, moisture and pH as well as between soil parameters. Some soil parameters such as sand content showed patchy spatial distribution. Conversely, a reliable spatial dependence could not be identified for other parameters such as P. Further research is needed
A 1.82 m^2 ring laser gyroscope for nano-rotational motion sensing
We present a fully active-controlled He-Ne ring laser gyroscope, operating in
square cavity 1.35 m in side. The apparatus is designed to provide a very low
mechanical and thermal drift of the ring cavity geometry and is conceived to be
operative in two different orientations of the laser plane, in order to detect
rotations around the vertical or the horizontal direction. Since June 2010 the
system is active inside the Virgo interferometer central area with the aim of
performing high sensitivity measurements of environmental rotational noise. So
far, continuous not attempted operation of the gyroscope has been longer than
30 days. The main characteristics of the laser, the active remote-controlled
stabilization systems and the data acquisition techniques are presented. An
off-line data processing, supported by a simple model of the sensor, is shown
to improve the effective long term stability. A rotational sensitivity at the
level of ten nanoradiants per squareroot of Hz below 1 Hz, very close to the
required specification for the improvement of the Virgo suspension control
system, is demonstrated for the configuration where the laser plane is
horizontal
Rotational sensitivity of the "G-Pisa" gyrolaser
G-Pisa is an experiment investigating the possibility to operate a high
sensitivity laser gyroscope with area less than for improving the
performances of the mirrors suspensions of the gravitational wave antenna
Virgo. The experimental set-up consists in a He-Ne ring laser with a 4 mirrors
square cavity. The laser is pumped by an RF discharge where the RF oscillator
includes the laser plasma in order to reach a better stability. The contrast of
the Sagnac fringes is typically above 50% and a stable regime has been reached
with the laser operating both single mode or multimode. The effect of hydrogen
contamination on the laser was also checked. A low-frequency sensitivity, below
, in the range of has been
measured.Comment: 6 pages, 6 figures, presented at the EFTF-IFCS joint conference 200
A high sensitivity tool for geophysical applications: A geometrically locked Ring Laser Gyroscope
This work demonstrates that a middle size ring laser gyroscope (RLG) can be a
very sensitive and robust instrument for rotational seismology, even if it
operates in a quite noisy environment. The RLG has a square cavity, m, and it lies in a plane orthogonal to the Earth rotational axis.
The Fabry-Perot optical cavities along the diagonals of the square were
accessed and their lengths were locked to a reference laser. Through a quite
simple locking circuit, we were able to keep the sensor fully operative for 14
days. The obtained long term stability is of the order of 3~nanorad/s and the
short term sensitivity close is to 2~nanorad/sHz. These results
are limited only by the noisy environment, our laboratory is located in a
building downtown.Comment: 9 pages, 4 figures, 25 reference
- …