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Abstract12

The harvested biomass of switchgrass (Panicum virgatum L.) is generally much lower than its13

potential; this may be due to several factors including not recovering all the biomass at harvest,14

weed competition, pests, disease and spatial variation of soil features. The objective of this research15

was to quantify the yield spatial variation of switchgrass and relate it to soil parameters, in a field16

of about 5 ha, in 2004 and 2005. Several thematic maps of soil parameters and biomass yield were17

produced using GIS and geostatistical methods. Soil parameters changed consistently within very18

short distances and biomass yield varied from 3 to more than 20 Mg ha-1. This remarkable variation19

indicates that the potential for increasing switchgrass productivity is a real prospect. Furthermore,20

spatial variation of yield showed similar patterns in the two years (r = 0.38**), and therefore a21

major influence of site characteristics on switchgrass yield can be assumed to occur. Significant22

correlations were found between biomass yield and soil N, P, moisture and pH as well as between23

soil parameters. Some soil parameters such as sand content showed patchy spatial distribution.24

Conversely, a reliable spatial dependence could not be identified for other parameters such as P.25

Further research is needed.26

27

1 of 18

Tuesday , November  21, 2006

Elsevier



Rev
ie

w
 C

op
y

2
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2

Abbreviations: Y04 and Y05 = biomass yield in 2004 and 2005; SS = soil strength; SM = soil3

moisture; SC = sand content; SiC = silt content; CC = clay content; OM = soil organic matter; P =4

available phosphate; N = total Kjeldhal nitrogen.5

6

1. Introduction7

Switchgrass (Panicum virgatum L.) is a warm-season perennial C4 grass native to North-America.8

Thanks to its high potential yield and low input requirements switchgrass has recently attracted the9

interest of researchers for thermo-chemical or ethanol end uses (McLaughlin et al., 2002; Samson10

and Omelian, 1992). The introduction of switchgrass into the conventional cropping systems will11

mostly depend on its productivity and economic benefits for farmers. In a recent research Monti et12

al. (2006) found that the break-even yield of switchgrass, i.e. the yield threshold below which the13

cultivation of switchgrass is less economic than that of other crops, being from 11 to 15 Mg ha-1.14

This result was encouraging because they were yields obtained under a wide range of climatic15

conditions (Monti et al., 2004; Sharma et al., 2003; Vogel et al., 2002; Sanderson et al., 1999).16

Nonetheless, yield prediction of switchgrass is still uncertain and this may discourage farmers from17

including this novel crop in conventional systems. Furthermore, biomass yield under similar18

environmental conditions was found to range from less than 5 to more than 25 Mg ha-1 (Monti et19

al., 2004; Elbersen et al., 2001; Pfeifer et al., 1990), even in plot experiments where plants are hand-20

harvested and soil characteristics are fairly constant. At farm level the range of biomass yield can21

increase even further due to the unpredictable spatial variation of soil properties (e.g. soil texture,22

nutrients, pH, slope etc.) or the difficulty of machines in recovering biomass (Vleeshouwers et al.23

2000). Therefore, average biomass yield is expected to be very different on field or on plot scale24

(Vleeshouwers et al. 2000). To understand how biomass yield can potentially be increased, the25

variation in productivity across the field should be carefully estimated. Site specific soil26
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characteristics associated with biomass yield should also be known so that areas of low productivity1

can be characterized. In general, farmers measure the average yield but without taking yield and2

intrinsic soil variations into account, thus practice is to treat the field uniformly. Stafford (1993)3

recognized however, that this is not only inefficient in terms of cost, but it also has undesirable4

environmental impacts, as inputs are applied to areas not requiring them (e.g. herbicide in free5

weeds zones) or where the crop cannot make full use of them (e.g. where nutrients are naturally6

available). Understanding field spatial variation and the relationships with crop response may7

therefore substantially increase the input effectiveness, increase the average biomass yield, and8

provide economic and environmental benefits. This is the core of precision farming theory.9

To the best of our knowledge there are no reports in literature of studies on switchgrass yield10

variation within a small field and its possible relationship with soil spatial variability. A lot of11

experiments aimed at assessing the influence of one or few agronomic factors on switchgrass yield12

(Heaton et al., 2004; Muir et al., 2001; Monti et al., 2001), but they generally referred to plot13

experiments. In the field however, many factors conjointly act and positive effects may somewhat14

hide the negative ones. Therefore, present research addressed: i) to estimate the spatial variation of15

switchgrass yield under mechanized field conditions; ii) to assess the spatial variation of soil16

properties; and iii) to produce thematic maps of yield and soil parameters using geo-statistical17

kriging approaches in order to find possible relationships between soil parameters and biomass18

yield.19

20

2. Materials and methods21

2.1. Experimental site22

The experiment was located in Ozzano dell’Emilia (lat. 44° 25’ N; long. 11° 28’ E, 80 m a.s.l.), Po23

Valley area, in a hill-field of 4.8 ha, previously cropped to sugar beet. The field prevailed to the24

Northwest and South; field slope was from 2% to 10%. It was classified as Typical Calcaric25

Cambisols (FAO), loam, clay-loam and silty-clay-loam with a clear prevalence of clay-loam type26
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(USDA classification). Soil tillage was carried out according to conventional techniques used for1

grasses. For the main soil treatment a Rabe-Week disc-plough (30 cm deep) pulled by a tractor (1862

kW) was used. Cultivation was performed with a 300-cm wide Howard–type rotary cultivator.3

Before plantation a dose of 44 kg ha-1 of P (triple super phosphate) was applied. The A horizon was4

30 cm deep in the entire field. Switchgrass (variety Alamo) was sown on 3 May 2002 by a seed drill5

commonly used for wheat. At emergence the seedling density was 106±18 plants m-2 (20 cm row-6

spaced). Annual N fertilization (100 kg ha-1, urea 46% N) was supplied 20 days after emergence.7

Weed control was carried out only in the establishment year using glyphosate (3 L ha-1) before8

sowing and after emergence nicosulfuron (40 g ha-1, divided in two applications). Field harvested9

area was measured using a GPS devise (GEKO 201, Garmin Ltd.).10

11

2.2. Yield and soil measurements12

In order to assess the yield variability, two post-winter harvests (2004 and 2005) were performed as13

following: cutting, windrowing then square baling. During the operations the position of each bale14

and the machine track were geo-referred using the GIS software Arcview3.2 (ESRI). Each bale and15

the relative harvesting area were measured. Harvesting area referring to one bale was calculated on16

the base of cutter-bar width and the distance between two succeeding bales. Hence, a large area17

represents a longer machine track to produce one bale or a low productive area. Dry matter yield18

was calculated by the ratio of each bale weight to its harvesting area. Therefore, the yield is the19

average value of each area. To perform semivariograms this value was located in the center of each20

area (centroid).21

A total of 60 soil samples regularly distributed across the field were collected and geo-referred22

during the emergence in 2004. Sand (SC), silt (SiC), clay (CC), organic matter (OM), pH, available23

P (P) and total N content (N) were determined in the upper 0.3 m. Each soil sample was dried (6024

°C for 24 hour) and grounded for texture and chemical analysis (<2 mm fraction). The texture was25

determined according to Bouyoucos densimeter method (Gee and Bauder, 1986); soil organic26
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matter was determined via redox reaction as given by Walkley-Black method (Walkley, 1947); pH1

was measured by a potentiometer dissolving 10 g of dry soil in 100 ml of water. P was obtained as2

given by Olsen et al (1954), i.e. extracting P in a 0.5M NaHCO3 solution at pH 8.5 and than3

measuring by colorimetry with ascorbic acid-ammonium molybdate reagent. Total N was4

determined according to Kjeldahl digestion method (Kjeldahl, 1883).5

A total of 165 measurements of soil strength (SS) were taken in the upper 50 cm using a soil cone6

penetrometer (ASAE, 1999), with an average soil moisture content of 204 mg g-1. Soil moisture7

content (SM) was evaluated during emergence in the upper 0.3 m (100 samples) by the time domain8

reflectometry (TDR100 probe, Spectrum Inc.). Parameters measurements were not collected in9

exactly in the same location.10

The normal distribution was estimated on skewness base: for a skewness range between -1 and 111

data were considered normally distributed. All data were standardized by subtracting the mean to12

each value then dividing for standard deviation.13

14

2.3. Spatial structure and map creation15

To produce thematic maps of yield and soil characteristics, kriging method (Krige, 1984) was used.16

In brief, the kriging is an advanced interpolation procedure generating estimated surfaces via17

semivariograms, which represent and characterize the spatial variation set against the distance (lag)18

(Isasks and Srivastava, 1989).19

The spatial structure of each variable has been defined from semivariogram parameters: nugget, sill20

(or total semivariance) and range. Nugget is the variance at distance zero and represents the21

experimental error; sill is the semivariance value at which the semivariogram reaches the upper22

bound after its initial increase. It is the maximum variance for this kind of semivariograms and23

represents the total (a priori) semivariance of the study area; range is the value (x axis) at which one24

variable becomes spatially independent, that is the lag-distance at which the semivariogram flattens.25

The nugget to sill ratio quantifies the importance of the random component and provides a26
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quantitative estimation of the spatial dependence. According to Cambardella et al. (1994),1

nugget/sill ratios can be grouped into three classes: (i) < 25% which means strong spatial2

dependence; (ii) 25 – 75%, moderate spatial dependence; (iii) > 75% spatially independent or pure3

nugget (i.e. when slopes of semivariograms are close to zero).4

Spatial variation has been characterized using different models (spherical, circular, etc.) fitting the5

semivariograms. Choice of the best fitting model was based on the lowest RMSE (Root Mean6

Square Error) and confirmed by a visual inspection. The lag-distance used was between 5 and 127

depending on the variable. Cross-validation and ordinary kriging have been applied to extrapolate8

the values of unsampled field parts. To build semivariograms and kriged surface maps an ArcView9

GIS script (Kriging interpolator 3.2) was used, which is a full implementation of the kriging10

commands in avenue language working in the Spatial Analyst extension (Boeringa, 2006).11

IDW (Inverse Distance Weighted) interpolation method, which assumes that each point has a local12

influence that decreases with distance (Bonham-Carter, 1994), was also used to produce maps in13

order to have a comparison with the kriging method.14

Iso-elevation curves were digitalized using a 5 m range to calculate field slope and aspects. Data15

were organized into classes and displayed in graduated gray scale increasing from white to black.16

17

2.4. Evaluation of factors and yield relationships18

Because the number and location for measuring the parameters were different, a specific dataset19

was extracted from each kriged map to understand the correlation between yield spatial variability20

and soil parameters. A triangular point array with a distance between points of 15 m (resulting in21

247 points) was superimposed on each map. At each point the interpolated value of the kriged map22

was assigned using the summarizing zone tool of ArcView3.2. The linear correlation coefficients23

(P≤0.05) were calculated as given by Pearson’s test.24

25

3. Results26
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3.1. Descriptive statistic1

Descriptive statistic is summarized in Table 1. Basing on skewness value, all variables were2

normally distributed. However, some comments may be helpful for discussion. The 28% of SS3

values, mostly located in the northern part of the field, exceeded the penetrometer threshold (2.24

MPa). The yield spatial variation was highly relevant in both the years (CV higher than 30%).5

Biomass yield ranged from 2.3 to 14.6 Mg ha-1 in 2004 and from 3.7 to 24.4 Mg ha-1 in 2005.6

Spatial variation was also remarkable for P and SC (CV equal to 27% and 19%, respectively).7

8

3.2. Spatial distribution of yield and soil parameters9

Spatial variation was characterized using spherical, circular and exponential models. Fig. 1 shows10

actual and fitted semivariograms for all parameters. Spherical model was the most used, as11

frequently occurs in geostatistics (Webster and Oliver, 2001). Exponential model was only used for12

SiC (Table 2), that approached sill value asymptotically. In this case range value was considered the13

lag distance at which the semivariogram reached 0.95 times its sill (Webster and Oliver, 2001). The14

semivariogram slope was positive in all the cases, which means that there was a spatial dependence15

of all parameters. The semivariance of Y04, Y05, SM, SC, OM and pH increased with distance to a16

constant value (sill). For the other parameters (SS, CC and N) the semivariance increased without17

reaching a maximum at relatively low lag distance, indicating that a strict range value could be18

identified outside the field size, or that the number of samples were too few to extrapolate the19

spatial dependence (Cambardella and Karlen, 1999). Despite this the spatial class for these20

parameters may be evaluated using the sill value at which the semivariogram starts to flatten or by21

visual interpretation of the nugget significance (Fig. 1c, g and m). All these parameters were22

considered to have between moderate and weak spatial dependent (Table 2). Y05 semivariogram23

(Fig. 1b) decreased from its maximum to a local minimum and then increased again. This form is24

known as hole effect and depends by the process repetition (Webster and Oliver, 2001). A circular25

model was fitted to this semivariogram as wave models were not among the options of the26
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interpolation software used.1

Based on nugget/sill ratio (Cambardella et al., 1994), the spatial dependence was weak (i.e. high2

nugget/sill) in Y04, Y05, P and N, strong in SC and moderate for the other variables. Y04, Y053

showed the smallest ranges, with semivariograms rapidly flattening, suggesting likely patchy4

distribution of these parameters.5

Yield maps and soil parameters obtained by ordinary kriging are displayed in Fig. 2 and 3. Biomass6

yield changed considerably across the field with the lowest values in the Southwestern and Eastern7

parts (Fig. 2a). This pattern was confirmed in 2005 (Fig. 2b), though with an overall higher yield of8

the more mature plants (3 years old). The maps of soil parameters showed increasing or decreasing9

values in one or two principal directions, but according to the method proposed by Webster and10

Oliver (2001), these trends were insignificant. In contrast Y04, Y05 and SC (Fig. 2 and 3c) showed11

a more prevalent patchy distribution.12

13

3.3. Relationship between yield and soil parameters14

Correlation coefficients were similar using IDW or kriging method, therefore only the coefficient15

based on kriged maps will be presented later on (Table 3).16

Biomass yield was significantly related to nearly all soil parameters. In particular it was positively17

related to N and P and negatively to SM and pH (Table 3). Biomass yield was also negatively18

related to SS and this may be due to a lower root development. In addition, the negative effect of SS19

was probably enhanced by the concurrent low presence of P and N (r=-0.71** and -0.62**20

respectively).21

Significant correlations were also observed between soil parameters. For example, SS with P and N;22

SM with pH; OM with pH (Table 3), the latter likely due to the acidification effect of humic acids.23

A close relationship was also found between N and P (r=0.76); both parameters were more24

concentrated in the middle of the field (Fig. 3h, i) where the highest yields were also recorded.25

26
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4. Discussion1

The wide yield range suggests that switchgrass is strongly affected by soil variability, and thus the2

average switchgrass production can be substantially lower than its potential. For example, it was3

shown that the potential harvestable biomass within the field was more than 20 Mg ha-1, while less4

than 3 Mg ha-1 where harvested in several low-yielding areas. This research however gives no5

mechanistic explanation of the yield variation, something that depends on conjoint effects of several6

contrasting or additive factors, that could not be adequately investigated here. What is clearly7

shown in this research is that areas with the lowest biomass production (the bottom-left white area8

in Fig. 2) were also those characterized by low SC and high SiC, pH and SS, parameters that were9

all significantly related to the yield. Therefore, the use of an appropriate site-specific practice may10

be expected to substantially increase the average yield.11

Recording the variation in fields of a similar size was the objective of several studies (López-12

Granados et al., 2005; López-Granados et al., 2002; Cambardella and Karlen, 1999; Mallarino et al.,13

1999); nonetheless, only in a few cases was the crop yield also measured and related to the soil14

parameters (Shahandeh et al., 2005; Vrindts et al., 2003; Stafford et al., 1996). Yield variation was15

considered very relevant in barley, ranging from 2 to 6 Mg ha-1 (Stafford et al., 1996), and winter16

wheat, ranging from 3 to 12 Mg ha-1 (Vrinds et al., 2003). The authors explained the variability in17

the case of barley was as affected by soil series, and by chemical components, particularly P in the18

case of wheat. In this research the considerable variation in biomass yield across the field was19

associated to a parallel variation of soil components. It was not completely clear how biomass yield20

could be positively related to SC, but it may be that being negatively related to pH (r=-0.79**), the21

latter increasing P (r=-0.24**), that SC then indirectly increased the yield (r=0.43**). However, the22

effect of available P on switchgrass yield is still debatable because contrasting effects of this23

element on switchgrass yield have been reported (Muir et al., 2001; Brejda, 2000; Jung et al., 1988).24

Soil N on the other hand has been shown to be the main determinant of yield spatial variation in25

annual crops (Shahandeh et al., 2005; Cox et al., 2003; Machado et al., 2000). The positive effect of26
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N on switchgrass yield was confirmed in plot experiments (Reynold et al., 2000; Sanderson and1

Reed, 2000), but we are not aware of any study on the influence of N on a field-scale. The results of2

our study showed a possible positive effect of soil N reserve on biomass yield. However, it should3

be highlighted that we only determined total and not available N, therefore the correlation between4

yield and N may only be indicative and further research is needed.5

Kriging methodology was useful in describing the spatial distribution pattern of variance which can6

only be roughly understood by a descriptive statistic. In fact, some parameters may change7

gradually across the field, while others may show a patchy distribution. This can only be partly8

revealed using means and / or standard deviation. In contrast, semivariograms enable assessment of9

spatial dependence, which is needed to calculate sampling interval and develop an accurate site-10

specific application scheme (López-Granados et al., 2002). An overall rule is to use sampling11

intervals equal to the half of the semivariogram range (Kerry and Oliver, 2003). Therefore, the12

feasibility of precision farming applications may increase with the degree of spatial dependence. In13

this research, some soil parameters such as SC and OM were determined to be strongly or14

moderately spatially dependent, whilst the yield showed a weak spatial dependence of approx. 80 m15

(Table 2). Of course, the most intrinsic soil features such as SC can not be readily managed.16

Intuitively, the easiest way to increase switchgrass yield, and at the same time enhance17

environmental and economical benefits, would be site-specific applications of fertilizer. The total N18

and P seemed weakly spatial dependent, thus additional samples, at smaller lag-distances, may be19

needed for them. Nonetheless, high sampling density could, in same cases, be uneconomic and20

exceed the cost of saved fertilizer (Birrel et al., 1996).21

22

5. Conclusion23

To date, only average switchgrass biomass yield has been measured when using mechanized24

systems. This research on yield spatial variation highlighted however, that switchgrass biomass25

yield may considerably vary, even within a small field (from 3 to more than 20 Mg ha-1). Therefore,26
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the average biomass yield could be much lower than its potential, and much could be done to1

increase switchgrass yield. Soil parameters varied greatly across the field and biomass yield was2

significantly related to nearly all of them. Site-specific applications could therefore be expected to3

improve the yield and returns for farmers. At the sampling level used the spatial dependence of4

some soil parameters cannot be unequivocally identified, and for those parameters further research5

is needed to define more reliable semivariograms.6

7
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Table 11

Sample number (N), mean, minimum (Min) and maximum (Max) values, standard deviation (SD),2

variation coefficient (CV) and skewness (SK) of the measured parameters (see list of abbreviations3

for parameters specification).4

Y04

(Mg ha-1)

Y05

(Mg ha-1)

SS

(MPa)

SM

(mg g-1)

SC

(%)

SiC

(%)

CC

(%)

OM

(mg g-1)

pH P

(mg kg-1)

N

(mg g-1)

N° 146 286 165 100 60 60 60 60 60 60 60

Mean 7.9 11.5 1.8 204 33.2 36.9 29.9 127 7.9 10 10

Min 2.3 3.7 1.1 188 13.8 26.0 23.6 83 7.4 5.8 8

Max 14.6 24.4 2.1 275 39.6 52.0 39.6 160 8.4 16.94 12
SD 2.4 3.5 0.3 32 6.3 5.1 3.4 19 0.2 23 1
CV 30.4 30.7 14.5 16 19.1 13.7 10.4 15 3.0 27 11
SK 0.3 0.7 -0.3 -0.1 -1.0 0.7 0.2 -0.4 0.3 0.6 0.1
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Table 21

Semivariogram models and spatial distribution parameters of standardized yields (Y04 and Y05, for2

the years 2004 and 2005, respectively) and soil parameters (see the list of abbreviations). RMSE is3

the root mean square error.4

Parameters Semivariogram model Range (m) r1 Spatial class2 RMSE

Y04 Spherical 100 76 W 0.14
Y05 Circular 60 77 W 0.13
SS Circular >300 26 S/M 0.11
SM Spherical 160 57 M 0.13
SC Spherical 220 16 S 0.33
SiC Exponential 178 55 M 0.34
CC Circular >250 44 M 0.41
OM Spherical 253 50 M 0.25
pH Spherical 190 63 M 0.22
P Spherical 192 80 W 0.18
N Spherical >250 77 W 0.37
1 Random variation = nugget/sill%.5

2 Class of spatial dependence: S = strong; M = moderate; W =weak.6
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Table 31

Correlation coefficients (Pearson’s test at P≤0.05) of biomass yield (Y04 and Y05 for year 2004 and2

2005, respectively) and soil parameters (see list of abbreviations). Only the significant correlations3

are shown.4

Y05 SS SM SC SiC CC OM pH P N Aspect Slope

Y04 0.38 -0.37 -0.61 0.31 -0.43 - - -0.40 0.44 0.56 0.14 -0.22

Y05 -0.28 -0.27 0.13 -0.10 - - -0.43 0.45 0.34 - -0.22
SS - 0.19 -0.29 -0.45 0.40 - -0.71 -0.62 0.33 0.28
SM -0.39 0.54 0.24 -0.17 0.60 -0.13 -0.43 -0.30 0.15
SC -0.89 -0.70 0.73 -0.79 - - - -
SiC 0.68 -0.70 0.73 - - -0.20 -
CC -0.76 0.63 0.38 0.27 -2.25 -
OM -0.61 - - 0.16 0.15
pH -0.24 -0.39 - 0.10
P 0.76 -0.20 -0.22
N - -0.31
Aspect 0.24

5
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Fig. 1. Semivariograms showing actual semivariance of standardized data and fitted models for 2

yield (a-b) and soil parameters (c-m). 3
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Fig. 2. Yield (Mg ha-1) maps obtained by ordinary kriging: (a) 2004 (Y04), (b) 2005 (Y05). Maps 2

show a patchy distribution. 3
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Fig. 3. Thematic maps of soil parameters: (a) soil strenght (MPa), (b) soil moisture (mg g-1), (c) 3

sand content (%), (d) silt content (%), (e) clay content (%), (f) soil organic matter (mg g-1), (g) pH, 4

(h) available P (mg kg-1),  (i)  total N content (mg g-1).  5
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