1,854 research outputs found

    Future constraints on neutrino isocurvature perturbations in the curvaton scenario

    Full text link
    In the curvaton scenario, residual isocurvature perturbations can be imprinted in the cosmic neutrino component after the decay of the curvaton field, implying in turn a non-zero chemical potential in the neutrino distribution. We study the constraints that future experiments like Planck, SPIDER or CMBPol will be able to put on the amplitude of isocurvature perturbations in the neutrino component. We express our results in terms of the square root \gamma of the non-adiabaticity parameter \alpha and of the extra relativistic degrees of freedom \Delta N_eff. Assuming a fiducial model with purely adiabatic fluctuations, we find that Planck (SPIDER) will be able to put the following upper limits at the 1sigma level: \gamma < 5.3x10^-3 (1.2x10^-2) and \Delta N_eff < 0.16 (0.40) . CMBPol will further improve these constraints to \gamma < 1.5x10^-3 and \Delta N_eff < 0.043. Finally, we recast these bounds in terms of the background neutrino degeneracy parameter \xi\ and the corresponding perturbation amplitude \sigma_\xi, and compare with the bounds on \xi\ that can be derived from Big Bang Nucleosynthesis.Comment: 6 pages, 2 figures. References added. Matches version accepted for publication in Phys. Rev.

    Ambiguous Tests of General Relativity on Cosmological Scales

    Full text link
    There are a number of approaches to testing General Relativity (GR) on linear scales using parameterized frameworks for modifying cosmological perturbation theory. It is sometimes assumed that the details of any given parameterization are unimportant if one uses it as a diagnostic for deviations from GR. In this brief report we argue that this is not necessarily so. First we show that adopting alternative combinations of modifications to the field equations significantly changes the constraints that one obtains. In addition, we show that using a parameterization with insufficient freedom significantly tightens the apparent theoretical constraints. Fundamentally we argue that it is almost never appropriate to consider modifications to the perturbed Einstein equations as being constraints on the effective gravitational constant, for example, in the same sense that solar system constraints are. The only consistent modifications are either those that grant near-total freedom, as in decomposition methods, or ones which map directly to a particular part of theory space

    Mutant p53 improves cancer cells\u2019 resistance to endoplasmic reticulum stress by sustaining activation of the UPR regulator ATF6

    Get PDF
    Missense mutations in the TP53 gene are frequent in human cancers, giving rise to mutant p53 proteins that can acquire oncogenic properties. Gain of function mutant p53 proteins can enhance tumour aggressiveness by promoting cell invasion, metastasis and chemoresistance. Accumulating evidences indicate that mutant p53 proteins can also modulate cell homeostatic processes, suggesting that missense p53 mutation may increase resistance of tumour cells to intrinsic and extrinsic cancer-related stress conditions, thus offering a selective advantage. Here we provide evidence that mutant p53 proteins can modulate the Unfolded Protein Response (UPR) to increase cell survival upon Endoplasmic Reticulum (ER) stress, a condition to which cancer cells are exposed during tumour formation and progression, as well as during therapy. Mechanistically, this action of mutant p53 is due to enhanced activation of the pro-survival UPR effector ATF6, coordinated with inhibition of the pro-apoptotic UPR effectors JNK and CHOP. In a triple-negative breast cancer cell model with missense TP53 mutation, we found that ATF6 activity is necessary for viability and invasion phenotypes. Together, these findings suggest that ATF6 inhibitors might be combined with mutant p53-targeting drugs to specifically sensitise cancer cells to endogenous or chemotherapy-induced ER stress

    Prospective Assessment of Sex-Related Differences in Symptom Status and Health Perception Among Patients With Atrial Fibrillation.

    Get PDF
    We prospectively assessed sex-specific differences in health perception, overall symptom status, and specific symptoms in a large cohort of patients with atrial fibrillation. We performed a prospective multicenter observational cohort study of 1553 patients with atrial fibrillation. Patients completed questionnaires about personal characteristics, comorbidities, and symptoms on a yearly basis. Mean age was 70±11 years among women and 67±12 years among men. Health perception on a visual analogue scale ranging from 0 to 100 (with higher scores indicating better health perception) was significantly lower in women than in men (70 [interquartile range: 50-80] versus 75 [interquartile range: 60-85]; javax.xml.bind.JAXBElement@29592a5d &lt;0.0001). More women than men had any symptoms (85.0% versus 68.3%; javax.xml.bind.JAXBElement@7ac0b4e4 &lt;0.0001), palpitations (65.2% versus 44.4%; javax.xml.bind.JAXBElement@41229466 &lt;0.0001), dizziness (25.6% versus 13.5%; javax.xml.bind.JAXBElement@61871784 &lt;0.0001), dyspnea (35.7% versus 21.8%; javax.xml.bind.JAXBElement@16cc22b &lt;0.0001), and fatigue (25.3% versus 19.1%; javax.xml.bind.JAXBElement@7ef43176 =0.006). At 1-year follow-up, symptoms decreased in both sexes but remained more frequent in women (49.1% versus 32.6%, javax.xml.bind.JAXBElement@2b200b6a &lt;0.0001). In multivariable adjusted longitudinal regression models, female sex remained an independent predictor for lower health perception (ß=-4.8; 95% CI, -6.5 to -3.1; javax.xml.bind.JAXBElement@72c212bd &lt;0.0001), any symptoms (odds ratio [OR]: 2.6; 95% CI, 2.1-3.4; javax.xml.bind.JAXBElement@15d8fb54 &lt;0.0001), palpitations (OR: 2.6; 95% CI, 2.1-3.2; javax.xml.bind.JAXBElement@4af80718 &lt;0.0001), dizziness (OR: 2.9; 95% CI, 2.1-3.9; javax.xml.bind.JAXBElement@61282e76 &lt;0.0001), dyspnea (OR: 2.1; 95% CI, 1.6-2.8; javax.xml.bind.JAXBElement@31d9f14 &lt;0.0001), fatigue (OR: 1.6; 95% CI, 1.2-2.2; javax.xml.bind.JAXBElement@51cdd678 =0.0008), and chest pain (OR: 1.8; 95% CI, 1.3-2.6; javax.xml.bind.JAXBElement@5b87db9e =0.001). Women with atrial fibrillation have a substantially higher symptom burden and lower health perception than men. These relationships persisted after multivariable adjustment and during prospective follow-up

    Late-transition versus smooth H(z)-deformation models for the resolution of the Hubble crisis

    Get PDF
    Gravitational transitions at low redshifts (zt < 0.1) have been recently proposed as a solution to the Hubble and growth tensions. Such transitions would naturally lead to a transition in the absolute magnitude M of type Ia supernovae (SnIa) at zt (Late M Transitions - LMT) and possibly in the dark energy equation of state parameter w (Late w − M Transitions - LwMT). Here, we compare the quality of fit of this class of models to cosmological data, with the corresponding quality of fit of the cosmological constant model (ΛCDM) and some of the best smooth H(z) deformation models (wCDM, CPL, PEDE). We also perform model selection via the Akaike Information Criterion and the Bayes factor. We use the full CMB temperature anisotropy spectrum data, the baryon acoustic oscillations (BAO) data, the Pantheon SnIa data, the SnIa absolute magnitude M as determined by Cepheid calibrators and the value of the Hubble constant H0 as determined by local SnIa calibrated using Cepheids. We find that smooth H(z) deformation models perform worse than transition models for the following reasons: 1) They have a worse fit to low-z geometric probes (BAO and SnIa data); 2) They favor values of the SnIa absolute magnitude M that are lower as compared to the value Mc obtained with local Cepheid calibrators at z < 0.01; 3) They tend to worsen the ℩m,0−σ8,0 growth tension. We also find that the w−M transition model (LwMT) does not provide a better quality of fit to cosmological data than a pure M transition model (LMT) where w is fixed to the ΛCDM value w = −1 at all redshifts. We conclude that the LMT model has significant statistical advantages over smooth late-time H(z) deformation models in addressing the Hubble crisis

    Survival of dental implants in patients with oral cancer treated by surgery and radiotherapy: a retrospective study

    Get PDF
    BACKGROUND: The aim of this retrospective study was to evaluate the survival of dental implants placed after ablative surgery, in patients affected by oral cancer treated with or without radiotherapy. METHODS: We collected data for 34 subjects (22 females, 12 males; mean age: 51 ± 19) with malignant oral tumors who had been treated with ablative surgery and received dental implant rehabilitation between 2007 and 2012. Postoperative radiation therapy (less than 50 Gy) was delivered before implant placement in 12 patients. A total of 144 titanium implants were placed, at a minimum interval of 12 months, in irradiated and non-irradiated residual bone. RESULTS: Implant loss was dependent on the position and location of the implants (P = 0.05-0.1). Moreover, implant survival was dependent on whether the patient had received radiotherapy. This result was highly statistically significant (P < 0.01). Whether the implant was loaded is another highly significant (P < 0.01) factor determinin

    Two-neutron transfer reaction mechanisms in 12^{12}C(6^6He,4^{4}He)14^{14}C using a realistic three-body 6^{6}He model

    Get PDF
    The reaction mechanisms of the two-neutron transfer reaction 12^{12}C(6^6He,4^4He) have been studied at 30 MeV at the TRIUMF ISAC-II facility using the SHARC charged-particle detector array. Optical potential parameters have been extracted from the analysis of the elastic scattering angular distribution. The new potential has been applied to the study of the transfer angular distribution to the 22+^+_2 8.32 MeV state in 14^{14}C, using a realistic 3-body 6^6He model and advanced shell model calculations for the carbon structure, allowing to calculate the relative contributions of the simultaneous and sequential two-neutron transfer. The reaction model provides a good description of the 30 MeV data set and shows that the simultaneous process is the dominant transfer mechanism. Sensitivity tests of optical potential parameters show that the final results can be considerably affected by the choice of optical potentials. A reanalysis of data measured previously at 18 MeV however, is not as well described by the same reaction model, suggesting that one needs to include higher order effects in the reaction mechanism.Comment: 9 pages, 9 figure

    The ALMA-ALPAKA survey I: high-resolution CO and [CI] kinematics of star-forming galaxies at z = 0.5-3.5

    Full text link
    Spatially-resolved studies of the kinematics of galaxies provide crucial insights into their assembly and evolution, enabling to infer the properties of the dark matter halos, derive the impact of feedback on the ISM, characterize the outflow motions. To date, most of the kinematic studies at z=0.5-3.5 were obtained using emission lines tracing the warm, ionized gas. However, whether these provide an exhaustive or only a partial view of the dynamics of galaxies and of the properties of the ISM is still debated. Complementary insights on the cold gas kinematics are therefore needed. We present ALPAKA, a project aimed at gathering high-resolution observations of CO and [CI] emission lines of star-forming galaxies at z=0.5-3.5 from the ALMA public archive. With 147 hours of total integration time, ALPAKA assembles ~0.25'' observations for 28 star-forming galaxies, the largest sample with spatially-resolved cold gas kinematics as traced by either CO or [CI] at z>0.5. By combining multi-wavelength ancillary data, we derive the stellar masses (M⋆M_{\star}) and star-formation rates (SFR) for our targets, finding values of M⋆≳1010M_{\star}\gtrsim 10^{10} M⊙_{\odot} and SFR of 10-3000 M⊙_{\odot}/yr. A large fraction of ALPAKA galaxies (19/28) lie in overdense regions (clusters, groups, and protoclusters). We exploit the ALMA data to infer their dynamical state and we find that 19/28 ALPAKA galaxies are rotating disks, 2 are interacting systems, while for the remaining 7 sources the classification is uncertain. The disks have velocity dispersion values that are typically larger in the innermost regions than in the outskirts, with a median value for the entire disk sample of 35−9+11^{+11}_{-9} km/s. Despite the bias of our sample towards galaxies hosting very energetic mechanisms, the ALPAKA disks have high ratios of ordered-to-random motion (V/σV/\sigma) with a median value of 9−2+7^{+7}_{-2}.Comment: 35 pages, 23 figures, 5 tables; submitted to A&A. The data and the outputs of the kinematic analysis will be made available at https://alpaka-survey.github.io/index.html once the paper is accepted. Comments are welcom
    • 

    corecore