80 research outputs found

    Foxg1 localizes to mitochondria and coordinates cell differentiation and bioenergetics.

    Get PDF
    Forkhead box g1 (Foxg1) is a nuclear-cytosolic transcription factor essential for the forebrain development and involved in neurodevelopmental and cancer pathologies. Despite the importance of this protein, little is known about the modalities by which it exerts such a large number of cellular functions. Here we show that a fraction of Foxg1 is localized within the mitochondria in cell lines, primary neuronal or glial cell cultures, and in the mouse cortex. Import of Foxg1 in isolated mitochondria appears to be membrane potential-dependent. Amino acids (aa) 277-302 were identified as critical for mitochondrial localization. Overexpression of full-length Foxg1 enhanced mitochondrial membrane potential (Διm) and promoted mitochondrial fission and mitosis. Conversely, overexpression of the C-term Foxg1 (aa 272-481), which is selectively localized in the mitochondrial matrix, enhanced organelle fusion and promoted the early phase of neuronal differentiation. These findings suggest that the different subcellular localizations of Foxg1 control the machinery that brings about cell differentiation, replication, and bioenergetics, possibly linking mitochondrial functions to embryonic development and pathological conditions

    The potential of eupraxia@sparc_lab for radiation based techniques

    Get PDF
    A proposal for building a Free Electron Laser, EuPRAXIA@SPARC_LAB, at the Laboratori Nazionali di Frascati, is at present under consideration. This FEL facility will provide a unique combination of a high brightness GeV-range electron beam generated in a X-band RF linac, a 0.5 PW-class laser system and the first FEL source driven by a plasma accelerator. The FEL will produce ultra-bright pulses, with up to 1012 photons/pulse, femtosecond timescale and wavelength down to 3 nm, which lies in the so called “water window”. The experimental activity will be focused on the realization of a plasma driven short wavelength FEL able to provide high-quality photons for a user beamline. In this paper, we describe the main classes of experiments that will be performed at the facility, including coherent diffraction imaging, soft X-ray absorption spectroscopy, Raman spectroscopy, Resonant Inelastic X-ray Scattering and photofragmentation measurements. These techniques will allow studying a variety of samples, both biological and inorganic, providing information about their structure and dynamical behavior. In this context, the possibility of inducing changes in samples via pump pulses leading to the stimulation of chemical reactions or the generation of coherent excitations would tremendously benefit from pulses in the soft X-ray region. High power synchronized optical lasers and a TeraHertz radiation source will indeed be made available for THz and pump–probe experiments and a split-and-delay station will allow performing XUV-XUV pump–probe experiments.Fil: Balerna, Antonella. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Bartocci, Samanta. UniversitĂ  degli studi di Sassari; ItaliaFil: Batignani, Giovanni. UniversitĂ  degli studi di Roma "La Sapienza"; ItaliaFil: Cianchi, Alessandro. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Chiadroni, Enrica. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Coreno, Marcello. Istituto Nazionale Di Fisica Nucleare.; Italia. Istituto di Struttura della Materia; ItaliaFil: Cricenti, Antonio. Istituto di Struttura della Materia; ItaliaFil: Dabagov, Sultan. Istituto Nazionale Di Fisica Nucleare.; Italia. National Research Nuclear University; Rusia. Lebedev Physical Institute; RusiaFil: Di Cicco, Andrea. Universita Degli Di Camerino; ItaliaFil: Faiferri, Massimo. UniversitĂ  degli studi di Sassari; ItaliaFil: Ferrante, Carino. UniversitĂ  degli studi di Roma “La Sapienza”; Italia. Center for Life Nano Science @Sapienza; ItaliaFil: Ferrario, Massimo. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Fumero, Giuseppe. UniversitĂ  degli studi di Roma “La Sapienza”; ItaliaFil: Giannessi, Luca. Elettra-Sincrotrone Trieste; Italia. ENEA C.R. Frascati; ItaliaFil: Gunnella, Roberto. Universita Degli Di Camerino; ItaliaFil: Leani, Juan Jose. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: Lupi, Stefano. UniversitĂ  degli studi di Roma “La Sapienza”; Italia. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma La Sapienza; ItaliaFil: Macis, Salvatore. UniversitĂ  degli Studi di Roma Tor Vergata; Italia. Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma Tor Vergata; ItaliaFil: Manca, Rosa. UniversitĂ  degli studi di Sassari; ItaliaFil: Marcelli, Augusto. Istituto Nazionale Di Fisica Nucleare.; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Masciovecchio, Claudio. Elettra-Sincrotrone Trieste; ItaliaFil: Minicucci, Marco. Universita Degli Di Camerino; ItaliaFil: Morante, Silvia. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Perfetto, Enrico. Universita Tor Vergata; Italia. Consiglio Nazionale delle Ricerche; ItaliaFil: Petrarca, Massimo. UniversitĂ  degli studi di Roma "La Sapienza"; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Pusceddu, Fabrizio. UniversitĂ  degli studi di Sassari; ItaliaFil: Rezvani, Javad. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Robledo, JosĂ© Ignacio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: Rossi, Giancarlo. Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”; Italia. Istituto Nazionale Di Fisica Nucleare.; Italia. Universita Tor Vergata; ItaliaFil: Sanchez, Hector Jorge. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: Scopigno, Tullio. Center for Life Nano Science @Sapienza; Italia. UniversitĂ  degli studi di Roma "La Sapienza"; ItaliaFil: Stefanucci, Gianluca. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Stellato, Francesco. Universita Tor Vergata; Italia. Istituto Nazionale Di Fisica Nucleare.; ItaliaFil: Trapananti, Angela. Universita Degli Di Camerino; ItaliaFil: Villa, Fabio. Istituto Nazionale Di Fisica Nucleare.; Itali

    Italian guidelines for the use of antiretroviral agents and the diagnostic-clinical management of HIV-1 infected persons. Update December 2014

    Get PDF

    Rapporto sull'efficienza energetica 2013

    Get PDF
    Rapporto tecnico sulla gestione energetica nelle grandi strutture del CNR e sui possibili interventi per la riduzione dei consumi (258 pagine, con contributi di 25 autori). Pubblicazione del progetto “Efficienza energetica”, promosso dal Direttore Generale del CNR con lettera prot. CNR n. 0075888 del 7/12/2012

    DECLINE OF PREVALENCE OF RESISTANCE ASSOCIATED SUBSTITUTIONS TO NS3 AND NS5A INHIBITORS AT DAA- FAILURE IN HEPATITIS C VIRUS IN ITALY OVER THE YEARS 2015 TO 2018

    Get PDF
    Background: A minority of patients fails to eliminate HCV and resistance-associated substitutions (RASs) are commonly detected at failure of interferon-free DAA regimens . Methods: Within the Italian network VIRONET-C, the prevalence of NS3/NS5A/NS5B RASs was retrospectively evaluated in patients who failed an EASL recommended DAA-regimen in 2015-2018 . The geno2pheno system and Sorbo MC et al. Drug Resistance Updates 2018 were used to infer HCV- genotype/subtype and predict drug resistance . The changes in prevalence of RASs over time were evaluated by chi-square test for trend, predictors of RASs at failure were analysed by logistic regression . Results: We included 386 HCV infected patients: 75% males, median age was 56 years (IQR 52-61), metavir fibrosis stage F4 in 76%; 106 (28%) were treatment- experienced: 91 (86%) with IFN-based treatments, 26 (25%) with DAAs. Patients with HIV and HBV coinfection were 10% (33/317) and 8% (6/72), respectively. HCV genotype was 1b in 122 pts (32%), 3 in 109 (28%), 1a in 97 (25%), 4 in 37 (10%), 2 in 21 (5%). DAA regimens were: LDV/SOF in 115 (30%), DCV/SOF in 103 (27%), 3D in 83 (21%), EBR/GRZ in 32 (8%), VEL/SOF in 29 (7%), GLE/PIB in 18 (5%) and 2D in 6 (2%); ribavirin was administered in 123 (32%) . The NS5A fasta-sequence was available for all patients, NS5B for 361 (94%), NS3 for 365 (95%) . According to the DAA failed the prevalence of any RASs was 90%, namely 80/135 (59%) in NS3, 313/359 (87%) in NS5A, 114/286 (40%) in NS5B . The prevalence of any RASs significantly declined from 2015 to 2018 (93% vs 70%, p=0.004): NS5A RASs from 90% to 72% (p=0 .29), NS3 RASs from 74% to 18% (p<0 .001), while NS5B RASs remained stable . Independent predictors of any RASs included advanced fibrosis (AOR 6.1, CI 95% 1.8-20.3, p=0 .004) and genotype (G2 vs G1a AOR 0 .03, CI 95% 0 .002- 0 .31, p=0 .004; G3 vs G1a AOR 0 .08, CI 95% 0 .01-0 .62, p=0 .02; G4 vs G1a AOR 0 .05, CI 95% 0 .006-0 .46, p=0 .008), after adjusting for age, previous HCV treatment and year of genotype . Notably, full activity was predicted for GLE/PIB in 75% of cases and for at least two components of VEL/SOF/VOX in 53% of cases, no case with full-resistance to either regimen was found . Conclusion: Despite decreasing prevalence over the years, RASs remain common at virological failure of DAA treatment, particularly in patients with the highest grade of liver fibrosis. The identification of RASs after failure could play a crucial role in optimizing retreatment strategies

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage

    Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes

    Get PDF
    Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19

    A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death

    Get PDF
    : The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways

    Pathogen-sugar interactions revealed by universal saturation transfer analysis

    Get PDF
    Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an “end-on” manner. uSTA-guided modeling and a high-resolution cryo–electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis
    • 

    corecore