86 research outputs found

    Modeling dust mineralogical composition: sensitivity to soil mineralogy atlases and their expected climate impacts

    Get PDF
    Soil dust aerosols are a key component of the climate system, as they interact with short- and long-wave radiation, alter cloud formation processes, affect atmospheric chemistry and play a role in biogeochemical cycles by providing nutrient inputs such as iron and phosphorus. The influence of dust on these processes depends on its physicochemical properties, which, far from being homogeneous, are shaped by its regionally varying mineral composition. The relative amount of minerals in dust depends on the source region and shows a large geographical variability. However, many state-of-the-art Earth system models (ESMs), upon which climate analyses and projections rely, still consider dust mineralogy to be invariant. The explicit representation of minerals in ESMs is more hindered by our limited knowledge of the global soil composition along with the resulting size-resolved airborne mineralogy than by computational constraints. In this work we introduce an explicit mineralogy representation within the state-of-the-art Multiscale Online Nonhydrostatic AtmospheRe CHemistry (MONARCH) model. We review and compare two existing soil mineralogy datasets, which remain a source of uncertainty for dust mineralogy modeling and provide an evaluation of multiannual simulations against available mineralogy observations. Soil mineralogy datasets are based on measurements performed after wet sieving, which breaks the aggregates found in the parent soil. Our model predicts the emitted particle size distribution (PSD) in terms of its constituent minerals based on brittle fragmentation theory (BFT), which reconstructs the emitted mineral aggregates destroyed by wet sieving. Our simulations broadly reproduce the most abundant mineral fractions independently of the soil composition data used. Feldspars and calcite are highly sensitive to the soil mineralogy map, mainly due to the different assumptions made in each soil dataset to extrapolate a handful of soil measurements to arid and semi-arid regions worldwide. For the least abundant or more difficult-to-determine minerals, such as iron oxides, uncertainties in soil mineralogy yield differences in annual mean aerosol mass fractions of up to ∼ 100 %. Although BFT restores coarse aggregates including phyllosilicates that usually break during soil analysis, we still identify an overestimation of coarse quartz mass fractions (above 2 µm in diameter). In a dedicated experiment, we estimate the fraction of dust with undetermined composition as given by a soil map, which makes up ∼ 10 % of the emitted dust mass at the global scale and can be regionally larger. Changes in the underlying soil mineralogy impact our estimates of climate-relevant variables, particularly affecting the regional variability of the single-scattering albedo at solar wavelengths or the total iron deposited over oceans. All in all, this assessment represents a baseline for future model experiments including new mineralogical maps constrained by high-quality spaceborne hyperspectral measurements, such as those arising from the NASA Earth Surface Mineral Dust Source Investigation (EMIT) mission.</p

    Multiorgan Metastasis of Human HER-2+ Breast Cancer in Rag2−/−;Il2rg−/− Mice and Treatment with PI3K Inhibitor

    Get PDF
    In vivo studies of the metastatic process are severely hampered by the fact that most human tumor cell lines derived from highly metastatic tumors fail to consistently metastasize in immunodeficient mice like nude mice. We describe a model system based on a highly immunodeficient double knockout mouse, Rag2−/−;Il2rg−/−, which lacks T, B and NK cell activity. In this model human metastatic HER-2+ breast cancer cells displayed their full multiorgan metastatic potential, without the need for selections or additional manipulations of the system. Human HER-2+ breast cancer cell lines MDA-MB-453 and BT-474 injected into Rag2−/−;Il2rg−/− mice faithfully reproduced human cancer dissemination, with multiple metastatic sites that included lungs, bones, brain, liver, ovaries, and others. Multiorgan metastatic spread was obtained both from local tumors, growing orthotopically or subcutaneously, and from cells injected intravenously. The problem of brain recurrencies is acutely felt in HER-2+ breast cancer, because monoclonal antibodies against HER-2 penetrate poorly the blood-brain barrier. We studied whether a novel oral small molecule inhibitor of downstream PI3K, selected for its penetration of the blood-brain barrier, could affect multiorgan metastatic spread in Rag2−/−; Il2rg−/− mice. NVP-BKM120 effectively controlled metastatic growth in multiple organs, and resulted in a significant proportion of mice free from brain and bone metastases. Human HER-2+ human breast cancer cells in Rag2−/−;Il2rg−/− mice faithfully reproduced the multiorgan metastatic pattern observed in patients, thus allowing the investigation of metastatic mechanisms and the preclinical study of novel antimetastatic agents

    Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions

    Get PDF
    Tumours require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. Since one or more of the VEGF ligand family is overexpressed in most solid cancers, there was great optimism that inhibition of the VEGF pathway would represent an effective anti-angiogenic therapy for most tumour types. Encouragingly, VEGF pathway targeted drugs such as bevacizumab, sunitinib and aflibercept have shown activity in certain settings. However, inhibition of VEGF signalling is not effective in all cancers, prompting the need to further understand how the vasculature can be effectively targeted in tumours. Here we present a succinct review of the progress with VEGF-targeted therapy and the unresolved questions that exist in the field: including its use in different disease stages (metastatic, adjuvant, neoadjuvant), interactions with chemotherapy, duration and scheduling of therapy, potential predictive biomarkers and proposed mechanisms of resistance, including paradoxical effects such as enhanced tumour aggressiveness. In terms of future directions, we discuss the need to delineate further the complexities of tumour vascularisation if we are to develop more effective and personalised anti-angiogenic therapies. © 2014 The Author(s)

    The Large Observatory For X-ray Timing: LOFT

    Get PDF
    LOFT, the Large Observatory for X-ray Timing, is a new space mission concept devoted to observations of Galactic and extra-Galactic sources in the X-ray domain with the main goals of probing gravity theory in the very strong field environment of black holes and other compact objects, and investigating the state of matter at supra-nuclear densities in neutron stars. The instruments on-board LOFT, the Large area detector and the Wide Field Monitor combine for the first time an unprecedented large effective area (~10 m2 at 8 keV) sensitive to X-ray photons mainly in the 2-30 keV energy range and a spectral resolution approaching that of CCD-based telescopes (down to 200 eV at 6 keV). LOFT is currently competing for a launch of opportunity in 2022 together with the other M3 mission candidates of the ESA Cosmic Vision Progra

    Introduction

    No full text
    The debate on the nature and architecture of the lexicon plays a prominent role in current research in psycholinguistics, philosophy of language, natural language processing and cognitive science. Innovative models of lexical knowledge have emerged in theoretical and computational linguistics, with the major aim of providing new foundations to the representation of word content. Exploring the Lexicon presents a representative sampling of various approaches in lexical research addressing important syntactic and semantic issues at the theoretical and computational level

    A Multiscale Model of Atherosclerotic Plaque Formation at Its Early Stage

    No full text

    MILK: a Hybrid system for Multilingual Indexing and Information Extraction

    No full text
    Substance Countable Countable Substance Human Animal Inanimate Figure 2: LKML hierarchy: top level. tic typing and recursive typing (identifying larger semantic tags) over a text is a &quot;semi-structured&quot; text, with less structure than a database file, but significantly more information than a text file. LKML-markup is the first step towards delivering automated content-based retrieval over text database. Semantically tagged portions of text will be indexed, together with some statistically inferred information about the document type. In a second phase, the information extraction component will be tailored to capture also individual referring concept, i.e., basically, all kinds of referential noun phrases. In parallel, information retrieval techniques will be applied to learn about the possibility of creating complex concepts in the hierarchy (in the first phase complex concepts are just inferred on a document base and are not driven by semantic inferences). In the last phase the inform..
    • …
    corecore