13 research outputs found

    Groundwater Levels in a Drained Beach in Long and Short Waves Conditions

    Get PDF
    none5noneFischione, Piera; Pasquali, Davide; Di Nucci, Carmine; Di Risio, Marcello; Saponieri, AlessandraFischione, Piera; Pasquali, Davide; Di Nucci, Carmine; Di Risio, Marcello; Saponieri, Alessandr

    From Darcy Equation to Darcy Paradox

    No full text
    This theoretical paper focuses on the single-phase fluid flow through a granular porous medium. The emphasis is on the Darcy flow regime (without free boundary) of a linear viscous fluid in a saturated, deformable, homogeneous porous medium. The approach is developed at the Darcy scale (also referred to as macroscale or phenomenological scale). Within this framework, some discrete aspects of the flow model are highlighted, the governing equations are revisited, the thermodynamic state functions are reconsidered, and the Darcy paradox is presented. The Darcy paradox is illustrated for the isoshoric-isothermal flow of a viscous fluid in the liquid state, in a homogenous porous medium. After some remarks about the intrinsic assumption of this kind of flow, the governing equations are reduced to a well-known parabolic equation. According to this equation, infinitesimal pressure disturbances diffuse at an infinite speed. To remove this paradox, a mathematical model, based on the elementary scales method, is employed

    New Dimensionless Number for the Transition from Viscous to Turbulent Flow

    No full text
    Within the framework of Classical Continuum Thermomechanics, we consider an unsteady isothermal flow of a simple isotropic linear viscous fluid in the liquid state to investigate the transient flow conditions. Despite the attention paid to this problem by several research works, it seems that the understanding of turbulence in these flow conditions is controversial. We propose a dimensionless procedure that highlights some aspects related to the transition from viscous to turbulent flow which occurs when a finite amplitude pressure wave travels through the fluid. This kind of transition is demonstrated to be described by a (first) dimensionless number, which involves the bulk viscosity. Furthermore, in the turbulent flow regime, we show the role played by a (second) dimensionless number, which involves the turbulent bulk viscosity, in entropy production. Within the frame of the 1D model, we test the performance of the dimensionless procedure using experimental data on the pressure waves propagation in a long pipe (water hammer phenomenon). The obtained numerical results show good agreement with the experimental data. The results’ inspection confirms the predominant role of the turbulent bulk viscosity on energy dissipation processes

    New Dimensionless Number for the Transition from Viscous to Turbulent Flow

    No full text
    Within the framework of Classical Continuum Thermomechanics, we consider an unsteady isothermal flow of a simple isotropic linear viscous fluid in the liquid state to investigate the transient flow conditions. Despite the attention paid to this problem by several research works, it seems that the understanding of turbulence in these flow conditions is controversial. We propose a dimensionless procedure that highlights some aspects related to the transition from viscous to turbulent flow which occurs when a finite amplitude pressure wave travels through the fluid. This kind of transition is demonstrated to be described by a (first) dimensionless number, which involves the bulk viscosity. Furthermore, in the turbulent flow regime, we show the role played by a (second) dimensionless number, which involves the turbulent bulk viscosity, in entropy production. Within the frame of the 1D model, we test the performance of the dimensionless procedure using experimental data on the pressure waves propagation in a long pipe (water hammer phenomenon). The obtained numerical results show good agreement with the experimental data. The results’ inspection confirms the predominant role of the turbulent bulk viscosity on energy dissipation processes

    Classical irreversible thermodynamics versus extended irreversible thermodynamics. The role of the continuity equation

    No full text
    This brief note focuses on a simple fluid, i.e., a homogeneous, chemically inert, and electrically neutral fluid, for which, in the linear nonequilibrium regime, the thermodynamic state is expressed by a relation between pressure, temperature, and density. The approach based on the elementary scales is used to check the validity range of both the classical irreversible thermodynamics and the extended irreversible thermodynamics. The achieved result reveals that the classical irreversible thermodynamics fails in providing an adequate response when the mechanical solicitations exceed limit values

    Surface Water Flow Balance of a River Basin Using a Shallow Water Approach and GPU Parallel Computing—Pescara River (Italy) as Test Case

    No full text
    The analysis and prevention of hydrogeological risks plays a very important role and, currently, much attention is paid to advanced numerical models that correspond more to physical reality and whose aim is to reproduce complex environmental phenomena even for long times and on large spatial scales. Within this context, the feasibility of performing an effective balance of surface water flow relating to several months was explored, based on accurate hydraulic and mathematical-numerical models applied to a system at the scale of a hydrographic basin. To pursue this target, a 2D Riemann–Godunov shallow-water approach, solved in parallel on a graphical processing unit (GPU), able to drastically reduce calculation time, and implemented into the RiverFlow2D code (2017 version), was selected. Infiltration and evapotranspiration were included but in a simplified way, in order to face the calibration and validation simulations and because, despite the parallel approach, it is very demanding even for the computer time requirement. As a test case the Pescara river basin, located in Abruzzo, Central Italy, covering an area of 813 km2 and well representative of a typical medium-sized basin, was selected. The topography was described by a 10 × 10 m digital terrain model (DTM), covered by about 1,700,000 triangular elements, equipped with 11 rain gauges, distributed over the entire area, with some hydrometers and some fluviometric stations. Calibration, and validation were performed considering the flow data measured at a station located in close proximity to the mouth of the river. The comparison between the numerical and measured data, and also from a statistical point of view, was quite satisfactory. A further important outcome was the capability to highlight any differences between the numerical flow-rate balance carried out on the basis of the contributions of all known sources and the values actually measured. This characteristic of the applied modeling allows better calibration and verification not only of the effectiveness of much more simplified approaches, but also the entire network of measurement stations and could suggest the need for a more in-depth exploration of the territory in question. It would also enable the eventual identification of further hidden supplies of water inventory from underground sources and, accordingly, to enlarge the hydrographic and hydrogeological border of the basin under study. Moreover, the parallel computing platform would also allow the development of effective early warning systems, for example, of floods
    corecore