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This note examines the two-dimensional unsteady isothermal free surface flow of an 
incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous 
medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type 
model for nonlinear water waves with Darcy’s law, the two-dimensional flow problem 
is solved using one-dimensional model equations including vertical effects and seepage 
face. In order to take into account the seepage face development, the system equations 
(given by the continuity and momentum equations) are completed by an integral relation 
(deduced from the Cauchy theorem). After testing the model against data sets available 
in the literature, some numerical simulations, concerning the unsteady flow through a 
rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Boussinesq equation [1–4] is the prototype of one-dimensional model equations for the study of unsteady free sur-
face flow in porous media. As is well known, this equation can be obtained by coupling the Dupuit approximation with the 
Darcy law. To investigate how the flow is affected by vertical velocity, the Boussinesq equation is often replaced by a series 
of extended Boussinesq equations [5–12]. These equations are used extensively to describe the water waves propagation in 
porous media as a consequence of tide-induced fluctuations [5–10] and wave interactions with porous structures [7,11,12]. 
A problem arising from the use of these extended Boussinesq equations is that the seepage face development and the capil-
lary fringe effects are neglected. Whereas a series of alternative Boussinesq equations are proposed to evaluate the capillary 
fringe effects [13–15], how to evaluate the seepage face development with a one-dimensional model is a problem still not 
completely solved [16,17].

An attempt to determine the height of the seepage face with the Boussinesq equation is performed in [16] by incorporat-
ing in the model equation a new equation. However, this equation, expressed by an inequality, “is an intuitive approximation 
of how a seepage face could form assuming Dupuit–Forchheimer flow” [16]. In the light of this statement, the use of this inequal-
ity in conjunction with the Boussinesq equation must be considered as a mathematical artifice that is used to force fit the 
model predictions to experimental evidences. This kind of approaches, based on mathematical models of dubious physical 
meaning, is commonly used also in other field (e.g., open channel flow and pipe flow – a critical review can be found in 
[18–25]), and determines a dangerous separation between the obtained solution and the problem under investigation.
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Fig. 1. Definition sketch.

In steady-state flow conditions, the seepage face height is evaluated analytically in a simple configuration (seepage flow 
in a homogeneous rectangular dam) by Polubarinova-Kochina [26]. This analytical solution, given in the elliptic integral form 
of the first kind, is computed numerically in [27]. For some simple configurations, approximate methods to compute the 
seepage face height can be found in [28–33].

In the field of numerical models, the seepage face problem is analyzed, among others, in [34–42].
Within the framework of extended Boussinesq equations (in the above-mentioned meaning), this note proposes a new 

set of one-dimensional model equations including vertical effects and seepage face. The model is built considering the 
archetypal case of the two-dimensional unsteady isothermal flow of an incompressible fluid in a non-deformable, homoge-
neous, isotropic, and saturated rectangular dam (with an impermeable horizontal bottom and zero recharge). The capillary 
effects are neglected. In order to take into account the seepage face development, the model equations (obtained by cou-
pling a Boussinesq-type model for nonlinear water waves with Darcy’s law) are completed by an integral relation (deduced 
from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations 
are presented and discussed.

The note is structured as follows: Section 1 presents the problem formulation; Section 2 is devoted to the one-
dimensional model equations; the details of numerical simulations and discussions of the results are provided in Section 3; 
conclusions are given in Section 4. In order to make reading easier, some mathematical considerations are included in the 
Appendixes at the end of the paper.

2. Flow problem and governing equations

The free boundary problem under consideration concerns the two-dimensional unsteady isothermal free surface flow of 
an incompressible fluid (water) in a non-deformable, homogeneous, isotropic and saturated rectangular dam of width L, 
with an impermeable horizontal bottom. Fig. 1 shows the geometric setup: the horizontal x-axis and the vertical z-axis 
form a Cartesian coordinate system; t is the time variable; h1 = constant and h2(t) are, respectively, the water levels at 
x = 0 and x = L; h(x, t) is the free surface elevation; sf (t) = h(L, t) − h2(t) is the seepage face height.

With zero recharge and neglecting the capillary effects, the free surface is a sharp interface between saturated and dry 
zones. The flow problem consists in finding the evolution of the free surface h(x, t), the seepage velocity field v(x, z, t) =
(vx, vz) (where vx(x, z, t) and vz(x, z, t) are the horizontal and vertical seepage velocity components, respectively) and the 
pressure field p(x, z, t) in the unbounded flow domain � = [0, L] × [0, h] for any t > 0.

The problem is governed by the continuity and momentum equations with appropriate boundary and initial conditions. 
In the range of validity of Darcy’s hypothesis [43], the system equations are given as [2,43]:

∇ · v = 0 in � (continuity equation) (1)

v = −K∇
(

z + p

ρg

)
in � (momentum equation) (2)

where K is the constant hydraulic conductivity, ρ the constant water density, and g the gravitational acceleration. It is 
important to note that the assumption of non-deformable porous medium implies that the storativity vanishes.
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Eqs. (1) and (2) are subject to the following boundary conditions [2,44,45]:

p = 0 on z = h (3)

vz = vx
∂h

∂x
+ η

∂h

∂t
on z = h (4)

vz = 0 on z = 0 (5)

p = 0 on x = L and h2 < z ≤ h (6)

z + p

ρg
= h1 on x = 0 (7)

z + p

ρg
= h2(t) on x = L and 0 ≤ z ≤ h2 (8)

where η is the constant porosity. Eqs. (3) and (4) are the dynamic and kinematic boundary conditions on the free surface, 
respectively; Eq. (5) is the kinematic boundary condition on the bottom; Eq. (6) is the seepage face boundary condition; 
Eqs. (7) and (8) impose the hydrostatic boundary conditions.

As is well known (see, e.g., [2,46–48]), as h(x, t) is unknown, the free surface boundary conditions (3) and (4) are not 
redundant. Roughly speaking, the kinematic boundary condition (4) guarantees that the same particles remain on the free 
surface at all time [2].

In the standard approach, the flow problem is formulated in terms of the potential function ϕ = z + p/ρg . By combining 
the continuity and momentum equations, the governing equation is expressed by the Laplace equation:

∇2ϕ = 0 in � (9)

The boundary conditions become [2,44,45]:

ϕ = z on z = h (10)
∂ϕ

∂z
= ∂ϕ

∂x

∂h

∂x
− η

K

∂h

∂t
on z = h (11)

∂ϕ

∂z
= 0 on z = 0 (12)

ϕ = z on x = L and h2 < z ≤ h (13)

ϕ = h1 on x = 0 (14)

ϕ = h2(t) on x = L and 0 ≤ z ≤ h2 (15)

By introducing the stream function ψ given as:

vx = ∂ψ

∂z
(16)

vz = −∂ψ

∂x
(17)

the following relationships hold:

∇2ψ = 0 in � (18)

ψ = q on z = h (19)

ψ = 0 on z = 0 (20)

−∂ψ

∂x
= ∂ψ

∂z

∂h

∂x
+ η

∂h

∂t
on z = h (21)

where q(x, t) is the unit discharge.
The recall of these three formulations of the problem (in terms of v and p – Eqs. (1)–(8) –, in terms of the poten-

tial function ϕ – Eqs. (9)–(15) –, and in terms of the stream function ψ – Eqs. (18)–(21)) are presented for the sake of 
completeness. Moreover, some of these equations are also used to develop the one-dimensional model.

For further developments, it is also useful to note that at any time t , the two functions ϕ and ψ satisfy the Cauchy–
Riemann relations:

∂ϕ

∂x
= − 1

K

∂ψ

∂z
(22)

∂ϕ = 1 ∂ψ
(23)
∂z K ∂x
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and the Cauchy integral relation:
˛

C+

(
ϕdz − 1

K
ψdx

)
= 0 (24)

where C+ is an oriented simple closed curve in �. As shown in Appendix A, Eq. (24) can be easily deduced from the Cauchy 
theorem [49,50].

3. One-dimensional model equations

The one-dimensional model equations are derived using a Boussinesq-type model for nonlinear water waves. The starting 
point is the Rayleigh expansion for the harmonic stream function [51–55]:

ψ(x, z, t) = f1(x, t)z − 1

3!
∂2 f1

∂x2
z3 + 1

5!
∂4 f1

∂x4
z5 − 1

7!
∂6 f1

∂x6
z7 + . . . (25)

where f1(x, t) is an arbitrary function.
As is well known, this expansion is only formal, and it is not necessary to justify the convergence of the sum with two 

or three terms [56]. Following the procedure proposed by Benjamin et al. (1954) [51], neglecting all terms after the first 
two, the stream function can be expressed as (see Appendix B):

ψ(x, z, t) = q

h
z − 1

3!
∂2

∂x2

(
q

h

)(
z3 − h2z

)
(26)

To the same order of approximation, the potential function is given as:

ϕ(x, z, t) = h − 1

2K

∂

∂x

(
q

h

)(
h2 − z2) (27)

Eq. (27) is obtained by vertical integration of Eq. (23):

∂ϕ

∂z
= 1

K

∂ψ

∂x
= 1

K

∂

∂x

(
q

h

)
z (28)

and using the dynamic condition (10).
In accordance with Eqs. (26) and (27), Eq. (22) provides the following one-dimensional momentum equation:

q

K
= − ∂

∂x

[
h2

2
− 1

K

∂

∂x

(
q

h

)
h3

3

]
(29)

while the kinematic boundary condition (4) becomes the one-dimensional continuity equation (see Appendix C):

1

K

∂q

∂x
= − η

K

∂h

∂t
(30)

The system equations (29) and (30) can be solved with appropriate initial and boundary conditions.
Although these aspects are considered in more detail later, it is important to start a discussion about the boundary 

conditions.
Similarly as for the 2D problem, at x = 0 the boundary condition is given as:

h(0, t) = h1 = constant (31)

On the contrary, at x = L the boundary condition cannot be expressed in term of h2(t): the 1D model provides h(x, t) and 
q(x, t), while no information on h2(t) is given. With the proposed 1D model, h2(t) and, consequently, sf (t), are further 
unknown functions to be determined.

In the first instance, to overcome this shortcoming, at x = L the boundary condition is given as:

q

K
(L, t) = g(t) (32)

where the function g(t) must be set to reproduce the boundary condition of the 2D problem in the best possible way.
Once the free surface elevation h(x, t) and the unit discharge q(x, t) are available, the seepage velocity v(x, z, t) = (vx, vz)

and the pressure field p(x, z, t) can be evaluated as:

vx(x, z, t) = −K
∂h

[
1 − h ∂

(
q
)]

+ 1 ∂2

2

(
q
)(

h2 − z2) (33)

∂x K ∂x h 2 ∂x h
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vz(x, z, t) = − ∂

∂x

(
q

h

)
z (34)

1

ρg
p(x, z, t) = h − z − 1

2K

∂

∂x

(
q

h

)(
h2 − z2) (35)

The problem to compute h2(t) and sf (t) can be solved using the Cauchy integral relation (24).
Identifying C+ with the boundary of the domain � (taken positive in counterclockwise direction) and using the boundary 

conditions (10), (13), (14), (15), (19), (20), Eq. (24) becomes:

˛

C+

(
ϕdz − 1

K
ψdx

)
=

0ˆ

h1

h1dz +
h2(t)ˆ

0

h2(t)dz +
h(L,t)ˆ

h2

zdz +
h1ˆ

h(L,t)

zdz −
0ˆ

L

1

K
q(x, t)dx = 0 (36)

After some rearranging, Eq. (36) takes the form:

1

2
h2

2(t) = 1

2
h2

1 −
Lˆ

0

1

K
q(x, t)dx (37)

and the seepage face height can be evaluated as:

sf (t) = h(L, t) − h2(t) = h(L, t) −

√√√√√h2
1 − 2

Lˆ

0

1

K
q(x, t)dx (38)

As shown in Appendix D, after some manipulations, the system equations (29) and (30) can be reduced to a one-
dimensional equation in h(x, t) which agree with the equations derived by Dagan (1967) [5], Parlange et al. (1984) [6], Liu 
et al. (1997) [7], Nielsen et al. (1997) [8]. These relationships offer insight on the order of approximation of Eqs. (29) and 
(30).

4. Numerical simulations

The numerical integration of system equations:

q

K
= − ∂

∂x

[
h2

2
− 1

K

∂

∂x

(
q

h

)
h3

3

]
(39)

1

K

∂q

∂x
= − η

K

∂h

∂t
(40)

subject to the boundary conditions:

h(0, t) = h1 = constant (41)
q

K
(L, t) = g(t) (42)

is performed using the commercial finite element software COMSOL Multiphysics [57].
In the numerical setup, a number of 15 elements are used in the x-direction (a finer mesh did not show a considerable 

difference in the results). The COMSOL Multiphysics solver, based on variable-order variable-step-size backward differenti-
ation formulas (BDF) see, e.g., [58], automatically chooses appropriate numerical time steps. The computation takes a few 
seconds and does not pose any special difficulties.

As mentioned above, once the free surface elevation h(x, t) and the unit discharge q(x, t) are computed, h2(t) and the 
seepage face height are evaluated by means of Eqs. (37) and (38), respectively.

The model testing is carried out by comparing the numerical results with numerical data sets, available in the literature 
[39], concerning the evolution of the free boundary from the static state (h(x, 0) = h1) until the stationary state. The value 
of h1 is kept constant, while the value of h2 passes instantaneously from h2(t = 0) = h1 to a preset value h2(t > 0) = H2. 
The geometrical and physical data sets are given in Table 1.

The proposed 1D model is able to reproduce only similar conditions (the meaning of which is explained in Appendix E) 
by imposing that g(t) passes instantaneously from g(t = 0) = 0 to the value g(t > 0) = q∗ = h2

1−H2
2

2L (see Table 1), where 

q∗ = h2
1−H2

2
2L is the unit discharge in the stationary state (see Appendix A). In order to show the quality of the validation, the 

selected results are presented in Figs. 2–13.
The figures show that the stationary state is achieved more quickly using the proposed model, and that, in stationary 

state, the proposed model provides a free surface elevation which is always higher than that of the numerical model [39].
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Table 1
Parameter setting.

Test h1 H2 L η/K
h2

1−H2
2

2L

1 1 0.167 0.667 0.4 0.729
2 3.22 0.84 1.62 0.2 2.982
3 4 0.84 1.62 0.2 4.720

Fig. 2. Test case 1. Free surface elevations: numerical results [39].

Fig. 3. Test case 1. Free surface elevations: model results.

Fig. 4. Test case 1: model results; numerical results [39].
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Fig. 5. Test case 1. Free surface elevations at t = 2; model results; numerical results [39].

Fig. 6. Test case 2. Free surface elevations: numerical results [39].

Fig. 7. Test case 2. Free surface elevations: model results.

The analysis of the results indicate that the maximum percentage error is of the order of 15 per cent.
In the following, the proposed model is applied to evaluate the influence of the several parameters on the flow process. 

The simulations involve 12 different scenarios that occur during a lowering of the free surface. The values of the input 
parameters are given in Table 2.
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Fig. 8. Test case 2: model results; numerical results [39].

Fig. 9. Test case 2. Free surface elevations at t = 2; model results; numerical results [39].

Fig. 10. Test case 3. Free surface elevations: numerical results [39].

In these simulations, the function g(t), introduced by Eq. (42), is modeled using a linear step function defined by the 
following parameters: start time T , initial value g(t ≤ T ) = q0/K , final value g(t ≥ T + τ ) = qf/K , where τ is the transition 

time, q0
K = h2

1−h2
2,0

2L , h2,0 = h2(t = 0), qf
K = h2

1−h2
2,f

2L , h2,f = h2(t → ∞).
The initial conditions are given as (Appendix F):

q
(x,0) = q0 = h2

1 − h2
2,0 (43)
K K 2L



374 C. Di Nucci / C. R. Mecanique 346 (2018) 366–383
Fig. 11. Test case 3. Free surface elevations: model results.

Fig. 12. Test case 3: model results; numerical results [39].

Fig. 13. Test case 3. Free surface elevations at t = 2; model results; numerical results [39].

h(x,0) =
√

h2
1 − 2

q0

K
x + 2

3

q2
0

K 2

[
1 − exp

(
−3K

q0
x

)]
(44)

Selected results are presented in Figs. 14–16.
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Table 2
Parameter setting. For all scenarios: h1 = 1, h2,0 = 0.8, h2,f = 0.1, T = 500.

Scenario η/K τ L

1 300 20 1
2 300 200 1
3 300 2000 1
4 3000 20 1
5 3000 200 1
6 3000 2000 1
7 300 20 0.5
8 300 200 0.5
9 300 2000 0.5
10 3000 20 0.5
11 3000 200 0.5
12 3000 2000 0.5

Fig. 14. Scenario 4 (see Table 2 for the parameter setting). Trends of h(L, t), sf (t),
´ L

0
1
K q(x, t)dx and h2(t) for a given g(t).

Fig. 15. Scenario 5 (see Table 2 for the parameter setting). Trends of h(L, t), sf (t),
´ L

0
1
K q(x, t)dx and h2(t) for a given g(t).

Figs. 14–16 show, among other things, that the relationships between g(t) and 
´ L

0
1
K q(x, t)dx, and between g(t) and 

h2(t), are nonlinear; consequently, the problem under investigation cannot be adequately described by a succession of 
steady states.

A summary of the results is plotted in the following figures.
Figs. 17–18 show the influence of g(t) and of η

K on h2(t).
For the same boundary conditions, i.e. the same function g(t), the influence of η

K on h2(t) decreases as L decreases; the 
influence of η in the evolution of the phenomenon under investigation decreases as the transition time τ of g(t) increases.
K
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Fig. 16. Scenario 6 (see Table 2 for the parameter setting). Trends of h(L, t), sf (t),
´ L

0
1
K q(x, t)dx and h2(t) for a given g(t).

Fig. 17. Comparisons between scenario 1 and scenario 4, 2 and 5, 3 and 6 (see Table 2 for the parameter setting). The plots are shifted vertically by 1 unit.

Fig. 18. Comparisons between scenario 7 and scenario 10, 8 and 11, 9 and 12 (see Table 2 for the parameter setting). The plots are shifted vertically by 1 
unit.

Considering that, if η
K decreases, the stationary state is achieved more quickly, and considering the usual variation range 

of porosity η and of hydraulic conductivity K see, e.g., [2], K played a predominant role over η in the evolution of the 
phenomenon under investigation.

Figs. 19–20 show the influence of g(t) and of η on sf (t).
K
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Fig. 19. Comparisons between scenario 1 and scenarios 4, 2 and 5, 3 and 6 (see Table 2 for the parameter setting). The plots are shifted vertically by 1 unit.

Fig. 20. Comparisons between scenario 7 and scenario 10, 8 and 11, 9 and 12 (see Table 2 for the parameter setting). The plots are shifted vertically by 
1 unit.

Fig. 21. Comparison between Scenario 1 and 7, 2 and 8, 3 and 9 (see Table 2 for the parameter setting). The plots are shifted vertically by 1 unit.

From a qualitative point of view, the behavior of sf (t) is similar to those of h2(t): for the same boundary conditions, i.e. 
the same function g(t), the influence of η

K on sf (t) decreases as L decreases. However, the influence of η
K on sf (t) is less 

than that of η
K on h2(t).

Figs. 21–22 show the influence of g(t) and of L on h2(t).
For the same boundary conditions, i.e. the same function g(t), the influence of L on h2(t) increases as η increases.
K
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Fig. 22. Comparison between Scenario 4 and 10, 5 and 11, 6 and 12 (see Table 2 for the parameter setting). The plots are shifted vertically by 1 unit.

5. Conclusions

In this note, the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, 
homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects) has been consid-
ered. The two-dimensional flow problem has been solved using one-dimensional model equations including vertical effects 
and seepage face. The vertical effects have been taken into account coupling a Boussinesq-type model for nonlinear water 
waves with Darcy’s law. The problem to compute the seepage face height has been overcome through the use of the Cauchy 
integral relation. The ability to determine the seepage face, distinguishes the proposed 1D model from the previous 1D 
models based on the Boussinesq-equation or on the Boussinesq extended equations. The governing equations have been 
numerically integrated using the commercial finite element software COMSOL Multiphysics. The numerical set up is quite 
simple and the computation does not show any difficulty.

Within the framework of the unsteady flow through a rectangular dam, the proposed model has been tested against 
numerical data sets available in the literature. In terms of the free surface elevation, the maximum percentage error is of 
the order of 15 per cent.

In the same configuration (flow through a rectangular dam), some numerical simulations, which occur during a lowering 
of the free surface, have been presented and discussed. The main results can be summarized as follows: the problem 
under investigation cannot be adequately described by a succession of steady states; the hydraulic conductivity K played a 
predominant role over the porosity η; the influence of η

K on h2(t) decreases as L decreases; the influence of η
K decreases 

as the transition time τ increases; the influence of η
K on sf (t) decreases as L decreases; the influence of η

K on sf (t) is less 
than that of η

K on h2(t); the influence of L on h2(t) increases as η
K increases.

Comparison with similar 1D model equations [5–8] has been performed. Some comments about the order of approxima-
tion have been provided.

In steady flow conditions (see Appendix F), the comparison between the model results and the analytical solution of 
Polubarinova-Kochina [26] lead to similar conclusions to those discussed for the unsteady flow: the maximum percentage 
error is of the order of 15 per cent; the proposed model provides a free surface elevation which is always higher than that 
proposed by Polubarinova-Kochina [26].

The application of the proposed model to “real” problems requires the replacement of the boundary condition (40)
(which is essentially mathematical) with by a more “physical” boundary condition: in other words, the boundary condition 
(40) should be expressed in terms of h2(t) and not in terms of q

K (L, t). Despite this limit, in the current configuration the 
proposed model can be effectively applied to perform sensitivity analyses and to investigate the effects of several parameters 
on the flow process.

Appendix A

Setting a complex number as y = x + iz, where i satisfies the rule i2 = −1, the Cauchy theorem can be formulated as 
follows [49,50]: if f (y) = f (x + iz) is analytic in a single connected region �, then the integral of f (y) with respect to y
along an oriented simple closed contour C+ ∈ �, must vanish:

˛

C+
f (y)dy = 0 (45)

Putting f (y) = ϕ(x, z) − i 1 ψ(x, z), Eq. (45) provides:
K
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˛

C+
f (y)dy =

˛

C+

(
ϕdx + 1

K
ψdz

)
+ i

˛

C+

(
ϕdz − 1

K
ψdx

)
= 0 (46)

Eq. (24) is the imaginary part of the integral relation (46).
Note that in steady flow conditions, Eq. (37) provides the Dupuit–Forchheimer discharge formula [2,59]:

q

K
= h2

1 − h2
2

2L
(47)

Appendix B

Using the Rayleigh expansion:

ψ(x, z, t) = f1(x, t)z − 1

3!
∂2 f1

∂x2
z3 + 1

5!
∂4 f1

∂x4
z5 − 1

7!
∂6 f1

∂x6
z7 + . . . (48)

and neglecting all terms after the first two, the stream function can be expressed as:

ψ(x, z, t) = f1(x, t)z − 1

3!
∂2 f1

∂x2
z3 (49)

Putting ψ(x, h, t) = q, Eq. (49) gives rise to the differential equation:

f1(x, t) = q

h
+ 1

3!
∂2 f1

∂x2
h2 (50)

With the adopted approximations, the following relationships hold:

∂

∂x
f1(x, t) = ∂

∂x

(
q

h

)
(51)

∂2

∂x2
f1(x, t) = ∂2

∂x2

(
q

h

)
(52)

Eq. (50) can be written in approximate form as:

f1(x, t) = q

h
+ 1

3!
∂2

∂x2

(
q

h

)
h2 (53)

and the stream function reduces to Eq. (26).
This procedure is standard and well documented (see, e.g., [51–56]).

Appendix C

With the adopted approximations, the following relationships hold:

vx(x,h, t) = q

h
− 1

3

∂2

∂x2

(
q

h

)
h2 (54)

vz(x,h, t) = − ∂

∂x

(
q

h

)
h (55)

vx(x,h, t)
∂h

∂x
= q

h

∂h

∂x
(56)

vz(x,h, t) − vx(x,h, t)
∂h

∂x
= − ∂

∂x

(
q

h

)
h − q

h

∂h

∂x
= −∂q

∂x
(57)

With Eq. (57), the kinematic boundary condition (4) reduces to Eq. (30).
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Appendix D

With the adopted approximations, the term 1
K

∂
∂x (

q
h ) which appears in Eq. (29) can be expressed as:

1

K

∂

∂x

(
q

h

)
= −∂2h

∂x2
(58)

and consequently Eq. (29) can be written in approximate form as:

q

K
= − ∂

∂x

[
h2

2
− 1

K

∂

∂x

(
q

h

)
h3

3

]
= − ∂

∂x

[
h2

2
+ h3

3

∂2h

∂x2

]
(59)

This equation, coupled with Eq. (30), provides:

∂h

∂t
− K

η

∂2

∂x2

[
h2

2
+ h3

3

∂2h

∂x2

]
= 0 (60)

Eq. (60) agree with the one-dimensional equation derived by Nielsen et al. (1997) [8].

Putting x = Lx′ , t = L2η
kH t′ , μ2 = H2

L2 , ε = a
H , h = ζ + hm, h = Hh′ , ζ = aζ ′ , hm = Hh′

m, where L is the characteristic 
horizontal scale, H the characteristic vertical scale, a the typical amplitude of the free surface elevation, ζ the free surface 
elevation, hm the mean depth, the dimensionless form of Eq. (60) is (where all primes have been omitted for convenience):

∂h

∂t
− ∂2

∂x2

[
h2

2
+ μ2 h3

3

∂2h

∂x2

]
= 0 (61)

or, equivalently:

∂ζ

∂t
− ε

∂

∂x

(
ζ

∂ζ

∂x

)
− hm

∂2ζ

∂x2
− μ2 h3

m

3

∂4ζ

∂x4
= 0 (62)

Eq. (62) agree with the one-dimensional equation derived by Liu et al. (1997) [7].
Expanding h in terms of the small parameter μ2 as:

h = h0 + μ2h1 + O
(
μ4) (63)

Eq. (61) gives rise to the one-dimensional equations:

∂h0

∂t
− ∂

∂x

(
h0

∂h0

∂x

)
= O

(
μ2) (64)

∂h1

∂t
− ∂2

∂x2
(h0h1) − μ2

3

∂2

∂x2

(
h3

0
∂2h0

∂x2

)
= O

(
μ4) (65)

These equations agree with the equations derived by Dagan (1967) [5] and Parlange et al. (1984) [6].
In the light of these considerations, the system equations (29) and (30) can be written in dimensionless form as:

q̃ = − ∂

∂x

[
h2

2
− μ2 ∂

∂x

(
q̃

h

)
h3

3

]
(66)

∂q̃

∂x
= −∂h

∂t
(67)

where q̃ = q
K

L
H2 . These relationships show that these system equations are accurate to the first order of μ2, i.e., with a 

truncation error of O (μ4).

Appendix E

The meaning of “similar conditions” is clarified by Fig. 23: when g(t) passes instantaneously from g(t = 0) = 0 to the 
value g(t > 0) = q∗ = h2

1−H2
2

2L , h2(t) descends rather steeply – but not instantaneously – to the level H2. In the current 
configuration, h2(t) is a further unknown function to be determined and, consequently, the boundary conditions at x = L
cannot be expressed in terms of h2(t).



C. Di Nucci / C. R. Mecanique 346 (2018) 366–383 381
Fig. 23. Trends of h2(t) when g(t) passes instantaneously from g(t = 0) = 0 to the value g(t > 0) = q∗ = h2
1−H2

2
2L . The plots are shifted vertically by 1 unit.

Fig. 24. Free surface elevation h(x): L = 0.5, h1 = 1, h2 = 0.5; Eq. (72); " numerical results [27].

Appendix F

In steady flow conditions, Eqs. (29) and (37) reduce to:

q

K
= − d

dx

(
h2

2
+ q

K

dh

dx

h

3

)
(68)

q

K
= h2

1 − h2
2

2L
(69)

Eq. (68), subject to the following boundary conditions [2]:

h|x=0 = h1 (70)

dh

dx

∣∣∣∣
x=0

= 0 (71)

provides [31]:

h(x) =
√

h2
1 − 2

q

K
x + 2

3

q2

K 2

[
1 − exp

(
−3K

q
x

)]
(72)

Coupling this equation with Eq. (69), the seepage face height sf = h(L) − h2 is expressed as:

sf =
2q2

3K 2 (1 − e− 3K
q L

)
(73)
h(L) + h2
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Eq. (72) can be used to evaluate the accuracy of the proposed model in steady flow conditions. The accuracy is checked by 
comparison with the analytical solution proposed by Polubarinova-Kochina [26]. This solution, given in the elliptic integral 
form of the first kind, is computed numerically in [27].

The analysis of the results indicates that the maximum percentage error is of the order of 15 per cent, and that the 
Eq. (72) provides a free surface elevation which is always higher than that proposed by Polubarinova-Kochina [26]. These 
results are similar to those discussed above for the unsteady flow.

As examples, Fig. 24 shows the comparison between approximate (Eq. (72)) and numerical [27] free surface elevation 
h(x).
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