65 research outputs found

    Prevalence of obesity and obesity-associated muscle wasting in patients on peritoneal dialysis

    Get PDF
    Background and aims: A progressive decrease in muscle mass until full-blown sarcopenia may occur in patients on peritoneal dialysis (PD) and worsen their life quality and expectancy. Here we investigate the prevalence of obesity and obesity-associated muscle wasting in PD patients. Patients and methods: The study design was observational, cross sectional. Body composition was assessed with BIA and BIVA in 88 PD patients (53.4 ± 13.1 years; 67% male). Patients with obesity and/or with reduced muscle mass were identified using FMI and SM/BW cutoff values, respectively. Inflammatory status was assessed by measuring CRP and fibrinogen blood levels. Results: A total of 44.3% of the patients showed a reduced muscle mass (37.5% moderate and 6.8% severe). The prevalence of obesity was 6.1%, 81.8%, and 100% in patients with normal, moderately, and severely reduced muscle mass, respectively (p < 0.05). Of the total, 15.2% of the patients with normal muscle mass, 18.4% of those with moderately reduced muscle mass, and 66.7% of those with severely reduced muscle mass had diabetes. The prevalence of severe muscle mass loss was higher in those with diabetes than in those without diabetes (22.2% vs. 2.8%, p < 0.05). Patients with obesity-associated muscle wasting showed higher fibrinogen (613.9 ± 155.1 vs. 512.9 ± 159.5 mg/dL, p < 0.05) and CPR (1.4 ± 1.3 vs. 0.6 ± 0.8 mg/dL, p < 0.05) blood concentrations than those with normal body composition. Conclusion: Obesity and diabetes were strongly associated with muscle mass loss in our PD patients. It remains to be established whether prevention of obesity with nutritional interventions can halt the occurrence of muscle mass loss in patients on PD

    Electron-Beam-Induced Grafting Of Chitosan Onto HDPE/ATZ Composites for Biomedical Applications

    Get PDF
    HDPE and HDPE/ATZ surfaces were functionalised with chitosan Via electron-beam irradiation technique in order to prepare materials suitable for biomedical purposes. ATR–FTIR and wettability measurements were employed for monitoring the surface changes after both irradiation and chitosan grafting reaction. The presence of ATZ influenced both the EB irradiation process and the surface functionalisation. Mechanical properties of irradiated materials were not remarkably affected by irradiation processing. Biological assays indicated that electrostatic interactions between the negative charges of the surface of cell membranes and the –NH3+ sites on chitosan chains promoted cell adhesion, while some oxidized species produced during the irradiation process were thought to cause a detrimental effect on the cell Viability

    Influence of chitosan on the mechanical and biological properties of HDPE for biomedical applications

    Get PDF
    High density polyethylene (HDPE) is widely used in biomedical field, except when strong cell-material interactions and high mechanical properties are required. To address this pitfall, two kinds of chitosan in different amounts were used as filler in the present research. Composites were prepared by melt extrusion process and their microstructural, thermal and mechanical properties were widely investigated. Also roughness and wettability were studied, as features of paramount importance in dictating cell response. Both types of chitosan endowed HDPE with higher Young modulus and lower elongation at break. Interestingly, fibroblast adhesion and viability were enhanced when a low amount of filler was used. The interaction of HDPE/chitosan composites with biological environment was investigated for the first time in order to assess the feasibility of these composites as materials for biomedical application

    Cannabidiolic acid in Hemp Seed Oil Table Spoon and Beyond

    Get PDF
    Cannabidiolic acid (CBDA) is the main precannabinoid in industrial hemp. It represents a common constituent of hemp seed oil, but mainly abundant in the aerial parts of the plant (including their processing waste). Thus, the optimization of fast and low-cost purification strategies is mandatory, as well as a deep investigation on its nutraceutical and cosmeceutical properties. To this purpose, CBDA content in hemp seed oil is evaluated, and its recovery from wasted leaves is favorably achieved. The cytotoxicity screening towards HaCaT cells, by means of MTT, SRB and LDH release assays, suggested it was not able to decrease cell viability or perturb cell integrity up to 10 μM concentration. Thus, the ability of CBDA to differentially modulate the release of proinflammatory cytokines and chemokines mediators has been evaluated, finding that CBDA decreased IFN-γ, CXCL8, CXCL10, CCL2, CCL4 and CCL5, mostly in a dose-dependent manner, with 10 μM tested concentration exerting the highest activity. These data, together with those from assessing antimicrobial activity against Gram(+) and Gram(-) bacteria and the antibiofilm formation, suggest that CBDA is able to counteract the inflammatory response, also preventing bacteria colonization

    Hepatitis A virus strains circulating in the Campania region (2015-2018) assessed through bivalve biomonitoring and environmental surveillance

    Get PDF
    The genetic diversity of Hepatitis A Virus (HAV) circulating in the Campania Region in years 2015-2018 was investigated through the monitoring of sentinel bivalve shellfish and water matrices. Overall, 463 water samples (71 sewage samples, 353 coastal discharge waters, and 39 seawaters samples), and 746 bivalve shellfish samples were analyzed. Positivity for HAV was detected in 20/71 sewage samples, 14/353 coastal discharge waters, 5/39 seawaters, and 102/746 bivalve shellfish. Sixty-one of the positive samples were successfully sequenced and were characterized as genotype IA (n = 50) and IB (n = 11). The prevalent strain circulating in 2015 in both bivalves and waters was the IA strain responsible for the outbreak occurring around the same time in the Naples area. This variant was no longer identified in subsequent years (2017-2018) when, instead, appeared two of the IA variants of the multistate outbreak affecting men who have sex with men (MSM), VRD_521_2016, and RIVM-HAV16-090, with the former prevailing in both shellfish and water environments. HAV IB isolates were detected over the years in shellfish and in water matrices, but not in clinical samples, suggesting that this genotype had been circulating silently. An integrated surveillance system (environment/food/clinical cases) can be a useful tool to monitor changes in viral variants in the population, as well as an early warning system

    Regulation of Asymmetrical Cytokinesis by cAMP during Meiosis I in Mouse Oocytes

    Get PDF
    Mammalian oocytes undergo an asymmetrical first meiotic division, extruding half of their chromosomes in a small polar body to preserve maternal resources for embryonic development. To divide asymmetrically, mammalian oocytes relocate chromosomes from the center of the cell to the cortex, but little is known about the underlying mechanisms. Here, we show that upon the elevation of intracellular cAMP level, mouse oocytes produced two daughter cells with similar sizes. This symmetrical cell division could be rescued by the inhibition of PKA, a cAMP-dependent protein kinase. Live cell imaging revealed that a symmetrically localized cleavage furrow resulted in symmetrical cell division. Detailed analyses demonstrated that symmetrically localized cleavage furrows were caused by the inappropriate central positioning of chromosome clusters at anaphase onset, indicating that chromosome cluster migration was impaired. Notably, high intracellular cAMP reduced myosin II activity, and the microinjection of phospho-myosin II antibody into the oocytes impeded chromosome migration and promoted symmetrical cell division. Our results support the hypothesis that cAMP plays a role in regulating asymmetrical cell division by modulating myosin II activity during mouse oocyte meiosis I, providing a novel insight into the regulation of female gamete formation in mammals

    EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020

    Get PDF
    Welcome to EVALITA 2020! EVALITA is the evaluation campaign of Natural Language Processing and Speech Tools for Italian. EVALITA is an initiative of the Italian Association for Computational Linguistics (AILC, http://www.ai-lc.it) and it is endorsed by the Italian Association for Artificial Intelligence (AIxIA, http://www.aixia.it) and the Italian Association for Speech Sciences (AISV, http://www.aisv.it)

    Arterial network geometric characteristics and regulation of capillary blood flow in hamster skeletal muscle microcirculation

    No full text
    This study was aimed to characterize the geometric arrangement of hamster skeletal muscle arteriolar networks and to assess the in vivo rhythmic diameter changes of arterioles to clarify regulatory mechanisms of the capillary perfusion. The experimental study was carried out in male Syrian hamsters implanted with a plastic chamber in the dorsum skin under pentobarbital anesthesia. The skeletal muscle microvessels were visualized by fluorescence microscopy. The vessel diameters, lengths and the rhythmic diameter changes of arterioles were analyzed with computer-assisted techniques. The arterioles were classified according to a centripetal ordering scheme. In hamster skeletal muscle microvasculature the terminal branchings, differentiated in long and short terminal arteriolar trees (TATs), originated from anastomotic vessels, defined "arcading" arterioles. The long TATs presented different frequencies along the branching vessels; order 4 arterioles had frequencies lower than those observed in the order 3, 2, and 1 vessels. The short TAT order 3 arterioles, directly originating from "arcading" parent vessels, showed a frequency dominating all daughter arterioles. The amplitude of diameter variations in larger vessels was in the range 30-40% of mean diameter, while it was 80-100% in order 3, 2, and 1 vessels. Therefore, the complete constriction of arterioles, caused an intermittent capillary blood perfusion. L-arginine or papaverine infusion caused dilation of arterioles and transient disappearing of vasomotion waves and induced perfusion of all capillaries spreading from short and long TAT arrangements. Therefore, the capillary blood flow was modulated by changes in diameter of terminal arterioles penetrating within the skeletal muscle fibers, facilitating redistribution of blood flow according to the metabolic demands of tissues
    • …
    corecore