4,958 research outputs found

    Single-center experience in the treatment of visceral artery aneurysms

    Get PDF
    Background: Visceral artery aneurysms (VAAs), although rare, represent a life-threatening disease with high mortality rates. With the more frequent use of diagnostic tests, there has been an incidental detection of these lesions which are mostly asymptomatic. It follows that surgeons are increasingly called to decide on the most appropriate management of VAAs between an open surgical or endovascular approach and among the different endovascular options currently available. The aim of this retrospective study was to evaluate the results of open surgery and interventional endovascular strategies of visceral artery aneurysms with respect to technical success, therapy-associated complications, and postinterventional follow-up in the elective and emergency situation. Methods: From January 1992 to January 2017, 125 open surgical or endovascular interventions for VAA were performed at our institution. Once the VAA was diagnosed and the indication for treatment was assessed, the preoperative diagnostic work-up consisted of contrast computed tomography (CT) or magnetic resonance imaging (MRI) and, in some patients, digital subtraction angiography. Follow-up included clinical and duplex ultrasound scan (DUS) and contrast-enhanced ultrasound to assess the treated vessel patency and organ perfusion after 1, 6, and 12 months, and yearly thereafter. CT or MRI controls were also performed at 1 year of follow-up and only when DUS was not diagnostic or showed a complication thereafter. After the first 5 years of follow-up, the status of the patient was obtained by a structured telephone survey. Results: The treatment option was endovascular in 56 of 125 cases (44.8%). Technical success was 98.3%. In one case, the procedure was interrupted for the extensive dissection of the afferent vessel. Twenty-six patients were treated by coil embolization while 29 with covered stenting. The endovascular approach was in emergency in two cases (3.6%). In the endovascular group, mortality was nil. Complications occurred in 5 cases (8.9%): 1 subacute intestinal ischemia caused by superior mesenteric artery dissection, 2 aneurysm reperfusion, 1 stent thrombosis, and 1 massive splenic hematoma. In 69 (55.2%) cases, surgical treatment was preferred, with 24 VAA resections and 45 arterial reconstructions. In 20 cases (29%), open surgery was performed in emergency conditions. In the surgical group, 8 emergency patients (40%) died intraoperatively. The mortality after elective surgical interventions was nil. Complications after surgery were 4 graft late thrombosis (5.8%): asymptomatic in three cases and requiring splenectomy in one. Conclusions: There is no overall consensus regarding the indications for treatment of VAA. Currently in emergent setting, the endovascular approach should be considered as the first choice because of its reduced invasiveness, faster way to access and bleeding control; this accounts for the lower morality of the interventional therapy than open surgery. Endovascular approach is effective for elective repair of VAAs, but procedure-related complications may occur in a not negligible number of patients. Given comparable mortality rates and low procedure-related complication rate, surgical approach still has space in the elective management of VAAs, especially for aneurysms unsuitable or challenging for the endovascular option in patients with low surgical risk. The size, location, and morphology of VAAs, systemic or local comorbidities, and specific anatomical situations such as previous abdominal surgery should dictate treatment choice

    Surface doping in T6/ PDI-8CN2 Heterostructures investigated by transport and photoemission measurements

    Full text link
    In this paper, we discuss the surface doping in sexithiophene (T6) organic field-effect transistors by PDI-8CN2. We show that an accumulation heterojunction is formed at the interface between the organic semiconductors and that the consequent band bending in T6 caused by PDI-8CN2 deposition can be addressed as the cause of the surface doping in T6 transistors. Several evidences of this phenomenon have been furnished both by electrical transport and photoemission measurements, namely the increase in the conductivity, the shift of the threshold voltage and the shift of the T6 HOMO peak towards higher binding energies.Comment: 5 pages, 5 figure

    Fixture-abutment connection surface and micro-gap measurements by 3D micro-tomographic technique analysis

    Get PDF
    X-ray micro-tomography (micro-CT) is a miniaturized form of conventional computed axial tomography (CAT) able to investigate small radio-opaque objects at a-few-microns high resolution, in a non-destructive, non-invasive, and tri-dimensional way. Compared to traditional optical and electron microscopy techniques, which provide two-dimensional images, this innovative investigation technology enables a sample tri-dimensional analysis without cutting, coating or exposing the object to any particular chemical treatment. X-ray micro-tomography matches ideal 3D microscopy features: the possibility of investigating an object in natural conditions and without any preparation or alteration; non-invasive, non-destructive, and sufficiently magnified 3D reconstruction; reliable measurement of numeric data of the internal structure (morphology, structure and ultra-structure). Hence, this technique has multi-fold applications in a wide range of fields, not only in medical and odontostomatologic areas, but also in biomedical engineering, materials science, biology, electronics, geology, archaeology, oil industry, and semi-conductors industry. This study shows possible applications of micro-CT in dental implantology to analyze 3D micro-features of dental implant to abutment interface. Indeed, implant-abutment misfit is known to increase mechanical stress on connection structures and surrounding bone tissue. This condition may cause not only screw preload loss or screw fracture, but also biological issues in peri-implant tissues

    Surgical management of rhinosinusitis in onco-hematological patients

    Get PDF
    ObjectivesIn onco-hematological diseases, the incidence of paranasal sinuses infection dramatically increase and requires a combination of medical and surgical therapy. Balloon dilatation surgery (DS) is a minimally invasive, tissue preserving procedure. The study evaluates the results of DS for rhinosinusitis in immunocompromised patients.MethodsA retrospective chart review was conducted in 110 hematologic patients with rhinosinusitis. Twenty-five patients were treated with DS technique and 85 patients with endoscopic sinus surgery (ESS). We considered the type of anesthesia and the extent of intra- and postoperative bleeding. Patients underwent Sino-Nasal Outcome Test (SNOT-20) to evaluate changes in subjective symptoms and global patient assessment (GPA) questionnaire to value patient satisfaction.ResultsLocal anesthesia was employed in 8 cases of DS and in 15 of ESS. In 50 ESS patients, an anterior nasal packing was placed and in 12 cases a repacking was necessary. In the DS group, nasal packing was required in 8 cases and in 2 cases a repacking was placed (P=0.019 and P=0.422, respectively). The SNOT-20 change score showed significant improvement of health status in both groups. However the DS group showed a major improvement in 3 voices: need to blow nose, runny nose, and facial pain/pressure. The 3-month follow-up GPA questionnaire showed an higher satisfaction of DS group.ConclusionBalloon DS represents a potentially low aggressive treatment and appears to be relatively safe and effective in onco-hematologic patients. All these remarks may lead the surgeon to consider a larger number of candidates for surgical procedure

    In silico analysis of TTR gene (coding and non-coding regions, and interactive network) and its implications in transthyretin-related amyloidosis.

    Get PDF
    Introduction: Transthyretin (TTR)-related amyloidosis is a life-threatening disease. Currently, several questions about the pathogenic mechanisms of TTR-related amyloidosis remain unanswered. Methods: We have investigated various TTR-related issues using different in silico approaches. Results: Using an amino acid similarity-based analysis, we have indicated the most relevant TTR secondary structures in determining mutation impact. Our amyloidogenic propensity analysis of TTR missense substitutions has highlighted a similar pattern for wild-type and mutated TTR amino b acid sequences. However, some mutations present differences with respect to the general distribution. We have identified non-coding variants in cis-regulatory elements of the TTR gene, and our analysis on V122I-related haplotypes has indicated differences in non-coding regulatory variants, suggesting differences among V122I carriers. The analysis of methylation status indicated CpG sites that may affect TTR expression. Finally, our interactive network analysis revealed functional partners of TTR that may play a modifier role in the pathogenesis of TTR-related amyloidosis. Discussion and conclusion: Our data provided new insights into the pathogenesis of TTR-related amyloidosis that, if they were to be confirmed through experimental investigations, could significantly improve our understanding of the disease

    UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    Get PDF
    Abstract. Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment. The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength), which are fundamental to infer geometrical and microphysical properties of clouds. A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer. The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud. Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is strongly influenced by the sublimation of precipitating ice crystals. Results illustrated in this study demonstrate that Raman lidars, like the one used in this study, can resolve the spatial and temporal scales required for the study of cirrus cloud microphysical processes and appear sensitive enough to reveal and quantify upper tropospheric humidification associated with cirrus cloud sublimation

    Leaf water diffusion dynamics in vivo through a sub-terahertz portable imaging system

    Get PDF
    The development of terahertz based technology has given the opportunity for the realization of non destructive techniques capable of gaining meaningful information on delicate systems such as biological samples. Here, the health status of leaves in vivo has been monitored through a portable terahertz imaging system. The data have been extracted and analysed from the images acquired and compared with analogous results reported in the literature on similar systems. The possibilty of extracting additional information from the images regarding leaf details has also been explored

    Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band

    Get PDF
    This paper presents the project Earth Cooling by Water Vapor Radiation, an observational programme, which aims at developing a database of spectrally resolved far infrared observations, in atmospheric dry conditions, in order to validate radiative transfer models and test the quality of water vapor continuum and line parameters. The project provides the very first set of far-infrared spectral downwelling radiance measurements, in dry atmospheric conditions, which are complemented with Raman Lidar-derived temperature and water vapor profiles
    • …
    corecore