128 research outputs found

    Enzymatic spermine metabolites induce apoptosis associated with increase of p53, caspase-3 and mir-34a in both neuroblastoma cells, SJNKP and the N-Myc-amplified form IMR5

    Get PDF
    Neuroblastoma (NB) is a common malignant solid tumor in children and accounts for 15% of childhood cancer mortality. Amplification of the N-Myc oncogene is a well-established poor prognostic marker in NB patients and strongly correlates with higher tumor aggression and resistance to treatment. New therapies for patients with N-Myc-amplified NB need to be developed. After treating NB cells with BSAO/SPM, the detection of apoptosis was determined after annexin V-FITC labeling and DNA staining with propidium iodide. The mitochondrial membrane potential activity was checked, labeling cells with the probe JC-1 dye. We analyzed, by real-time RT-PCR, the transcript of genes involved in the apoptotic process, to determine possible down-or upregulation of mRNAs after the treatment on SJNKP and the N-Myc-amplified IMR5 cell lines with BSAO/SPM. The experiments were carried out considering the proapoptotic genes Tp53 and caspase-3. After treatment with BSAO/SPM, both cell lines displayed increased mRNA levels for all these proapoptotic genes. Western blotting analysis with PARP and caspase-3 antibody support that BSAO/SPM treatment induces high levels of apoptosis in cells. The major conclusion is that BSAO/SPM treatment leads to antiproliferative and cytotoxic activity of both NB cell lines, associated with activation of apoptosis

    Three dimensional tracking of exploratory behavior of barnacle cyprids using stereoscopy

    Get PDF
    Surface exploration is a key step in the colonization of surfaces by sessile marine biofoulers. As many biofouling organisms can delay settlement until a suitable surface is encountered, colonization can comprise surface exploration and intermittent swimming. As such, the process is best followed in three dimensions. Here we present a low-cost transportable stereoscopic system consisting of two consumer camcorders. We apply this novel apparatus to behavioral analysis of barnacle larvae (? 800 lm length) during surface exploration and extract and analyze the three-dimensional patterns of movement. The resolution of the system and the accuracy of position determination are characterized. As a first practical result, three-dimensional swimming trajectories of the cypris larva of the barnacle Semibalanus balanoides are recorded in the vicinity of a glass surface and close to PEG2000-OH and C11NMe3 +Cl- terminated self-assembled monolayers. Although less frequently used in biofouling experiments due to its short reproductive season, the selected model species [Marechal and Hellio (2011), Int Biodeterior Biodegrad, 65(1):92-101] has been used following a number of recent investigations on the settlement behavior on chemically different surfaces [Aldred et al. (2011), ACS Appl Mater Interfaces, 3(6):2085-2091]. Experiments were scheduled to match the availability of cyprids off the north east coast of England so that natural material could be used. In order to demonstrate the biological applicability of the system, analysis of parameters such as swimming direction, swimming velocity and swimming angle are performed.DFG/Ro 2524/2-2DFG/Ro 2497/7-2ONR/N00014-08-1-1116ONR/N00014-12-1-0498EC/FP7/2007-2013/23799

    Ion rates in the International Space Station during the December 2006 Solar Particle Event

    Get PDF
    Solar Particle Events (SPEs) are a major concern during prolonged space missions. During such events, a large amount of light ions, mostly protons and helium nuclei, are accelerated with enough energy to traverse the spacecraft hull and therefore represent a high hazard for the crews' health. The ALTEA particle telescope was collecting continuous data inside the USLab module of the International Space Station (ISS) during most of the December 2006 SPEs. The telescope is able to measure protons and helium respectively in the 42–45 MeV and 42–250 MeV/nucleon energy ranges, heavier ions up to relativistic molybdenum, and to discriminate nuclei for Z ≥ 5. First measurements of the charged radiation environment inside the USLab during a SPE are presented. The data averaged over the entire SPE week show an increase of the light ion rate (about a factor 1.5 in the energy range of the detector) when compared to quiet Sun conditions. The increase becomes much higher during the SPE climax (13 December) reaching a factor 10 (when averaged over three ISS orbits showing the highest activity). The extension of these results beyond the detector range is discussed. Conversely, the rates of ions with Z ≥ 5 are shown not to change significantly during the SPE week

    A compact Time-Of-Flight detector for space applications: The LIDAL system

    Get PDF
    Abstract LIDAL (Light Ion Detector for ALTEA system) is a compact detector designed to upgrade ALTEA (Anomalous Long Term Effects on Astronauts) silicon detector apparatus, in order to study in detail the low-Z part of ions spectrum inside the International Space Station (ISS) and to enhance the Particle Identification (PID) capability of the system. The new detector is designed to trigger ALTEA and to perform Time-Of-Flight measurements. It is based on plastic scintillators for fast timing applications read by Photo-Multiplier-Tubes (PMTs). A custom Front End Electronics (FEE) has been designed to reach time resolutions less than 100 ps ( σ ) for protons. A LIDAL prototype has been developed at the University of Rome Tor Vergata to test the timing performance of the scintillators, the PMTs and of the custom FEE using the proton beam line at the TIFPA (Trento Institute for Fundamentals Physics Applications) center in Trento, Italy. The results of these tests are reported and discussed. They have also been used for a preliminary evaluation of the Particle Identification (PID) capability of the final LIDAL-ALTEA detector system in response to the ions spectra expected on-board the ISS

    Prognostic Value of the Fibrosis-4 Index in Human Immunodeficiency Virus Type-1 Infected Patients Initiating Antiretroviral Therapy with or without Hepatitis C Virus

    Get PDF
    Objective: To evaluate the Fibrosis (FIB)-4 index as a predictor of major liver-related events (LRE) and liver-related death (LRD) in human immunodeficiency virus (HIV) type-1 patients initiating combination antiretroviral therapy (cART). Design: Retrospective analysis of a prospective cohort study. Setting: Italian HIV care centers participating to the ICONA Foundation cohort. Participants: Treatment-naive patients enrolled in ICONA were selected who: initiated cART, had hepatitis C virus (HCV) serology results, were HBsAg negative, had an available FIB-4 index at cART start and during follow up. Methods: Cox regression models were used to determine the association of FIB4 with the risk of major LRE (gastrointestinal bleeding, ascites, hepatic encephalopathy, hepato-renal syndrome or hepatocellular carcinoma) or LRD. Results: Three-thousand four-hundred seventy-five patients were enrolled: 73.3% were males, 27.2% HCV seropositive. At baseline (time of cART initiation) their median age was 39 years, had a median CD4+ T cell count of 260 cells/uL, and median HIV RNA 4.9 log copies/ mL, 65.9% had a FIB-4 < 1.45, 26.4% 1.45-3.25 and 7.7% > 3.25. Over a follow up of 18,662 person-years, 41 events were observed: 25 major LRE and 16 LRD (incidence rate, IR, 2.2 per 1,000 PYFU [95% confidence interval, CI 1.6-3.0]). IR was higher in HCV seropositives as compared to negatives (5.9 vs 0.5 per 1,000 PYFU). Higher baseline FIB-4 category as compared to < 1.45 (FIB-4 1.45-3.25: HR 3.55, 95% CI 1.09-11.58; FIB-4 > 3.25: HR 4.25, 1.21-14.92) and time-updated FIB-4 (FIB-4 1.45-3.25: HR 3.40, 1.02-11.40; FIB- 4> 3.25: HR 21.24, 6.75-66.84) were independently predictive of major LRE/LRD, after adjusting for HIV- and HCV-related variables, alcohol consumption and type of cART. Conclusions: The FIB-4 index at cART initiation, and its modification over time are risk factors for major LRE or LRD, independently of infection with HCV and could be used to monitor patients on cART

    Critical Review of Norovirus Surrogates in Food Safety Research: Rationale for Considering Volunteer Studies

    Get PDF
    The inability to propagate human norovirus (NoV) or to clearly differentiate infectious from noninfectious virus particles has led to the use of surrogate viruses, like feline calicivirus (FCV) and murine norovirus-1 (MNV), which are propagatable in cell culture. The use of surrogates is predicated on the assumption that they generally mimic the viruses they represent; however, studies are proving this concept invalid. In direct comparisons between FCV and MNV, their susceptibility to temperatures, environmental and food processing conditions, and disinfectants are dramatically different. Differences have also been noted between the inactivation of NoV and its surrogates, thus questioning the validity of surrogates. Considerable research funding is provided globally each year to conduct surrogate studies on NoVs; however, there is little demonstrated benefit derived from these studies in regard to the development of virus inactivation techniques or food processing strategies. Human challenge studies are needed to determine which processing techniques are effective in reducing NoVs in foods. A major obstacle to clinical trials on NoVs is the perception that such trials are too costly and risky, but in reality, there is far more cost and risk in allowing millions of unsuspecting consumers to contract NoV illness each year, when practical interventions are only a few volunteer studies away. A number of clinical trials have been conducted, providing important insights into NoV inactivation. A shift in research priorities from surrogate research to volunteer studies is essential if we are to identify realistic, practical, and scientifically valid processing approaches to improve food safety

    Tetracosahexaenoylethanolamide, a novel -acylethanolamide, is elevated in ischemia and increases neuronal output.

    Get PDF
    -acylethanolamines (NAEs) are endogenous lipid-signaling molecules derived from fatty acids that regulate numerous biological functions, including in the brain. Interestingly, NAEs are elevated in the absence of fatty acid amide hydrolase (FAAH) and following CO-induced ischemia/hypercapnia, suggesting a neuroprotective response. Tetracosahexaenoic acid (THA) is a product and precursor to DHA; however, the NAE product, tetracosahexaenoylethanolamide (THEA), has never been reported. Presently, THEA was chemically synthesized as an authentic standard to confirm THEA presence in biological tissues. Whole brains were collected and analyzed for unesterified THA, total THA, and THEA in wild-type and FAAH-KO mice that were euthanized by either head-focused microwave fixation, CO + microwave, or CO only. PPAR activity by transient transfection assay and ex vivo neuronal output in medium spiny neurons (MSNs) of the nucleus accumbens by patch clamp electrophysiology were determined following THEA exposure. THEA in the wild-type mice was nearly doubled ( 0.05) transcriptional activity of PPARs relative to control, but 100 nM of THEA increased ( < 0.001) neuronal output in MSNs of the nucleus accumbens. Here were identify a novel NAE, THEA, in the brain that is elevated upon ischemia/hypercapnia and by KO of the FAAH enzyme. While THEA did not activate PPAR, it augmented the excitability of MSNs in the nucleus accumbens. Overall, our results suggest that THEA is a novel NAE that is produced in the brain upon ischemia/hypercapnia and regulates neuronal excitation
    corecore