1,810 research outputs found

    Mechanisms of evolution of the propeller wake in the transition and far fields

    Get PDF
    In the present study the mechanisms of evolution of propeller tip and hub vortices in the transitional region and the far field are investigated experimentally. The experiments involved detailed time-resolved visualizations and velocimetry measurements and were aimed at examining the effect of the spiral-to-spiral distance on the mechanisms of wake evolution and instability transition. In this regard, three propellers having the same blade geometry but different number of blades were considered. The study outlined dependence of the wake instability on the spiralto- spiral distance and, in particular, a streamwise displacement of the transition region at the increasing inter-spiral distance. Furthermore, a multi-step grouping mechanism among tip vortices was highlighted and discussed. It is shown that such a phenomenon is driven by the mutual inductance between adjacent spirals whose characteristics change by changing the number of blades

    Analysis of the propeller wake by pressure and velocity correlation

    Get PDF
    In the present study an experimental analysis of the velocity and pressure fields behind a marine propeller, in non cavitating regime is reported. Velocity measurements were performed in phase with the propeller angle by using 2D Particle Image Velocimetry (2D-PIV). Measurements were carried out arranging the light sheet along the mid longitudinal plane of the propeller, to investigate the evolution of the axial and the radial velocity components, from the blade trailing edge up to 2 diameters downstream. The pressure measurements were performed at four radial and eight longitudinal positions downstream the propeller model. Measurements of the pressure field were performed at different advance ratios of the propeller. Pressure data, processed by using slotting techniques, allowed to reconstruct the evolution of the pressure field in phase with the reference blade position. In addition, the correlation of the velocity and pressure signals was performed. The analysis demonstrated that, within the near wake, the tip vortices passage is the most important contribution in generating the pressure field in the propeller flow. The incoming vortex breakdown process causes a strong deformation of the hub vortex far downstream the slipstream contraction. This process contributes to the pressure generation at the shaft rate frequency

    Analysis of the propeller wake evolution by pressure and velocity phase measurements

    Get PDF
    In the present study an experimental analysis of the velocity and pressure fields behind a marine propeller, in non-cavitating regime is reported. Particle image velocimetry measurements were performed in phase with the propeller angle, to investigate the evolution of the axial and the radial velocity components, from the blade trailing edge up to two diameters downstream. In phase pressure measurements were performed at four radial and eight longitudinal positions downstream the propeller model at different advance ratios. Pressure data, processed by using slotting techniques, allowed reconstructing the evolution of the pressure field in phase with the reference blade position. In addition, the correlation of the velocity and pressure signals was performed. The analysis demonstrated that, within the near wake, the tip vortices passage is the most important contribution in generating the pressure field in the propeller flow. The incoming vortex breakdown process causes a strong deformation of the hub vortex far downstream of the slipstream contraction. This process contributes to the pressure generation at the shaft rate frequency

    Naturalness consumption and Biodiversity in an Ecoregion of Central Italy

    Get PDF
    Landscape naturalness and landscape biodiversity are closely connected with ecosystem sustainability. In this study, “naturalness consumption” and “induced biodiversity” created by human interference were evaluated in an ecoregion of Central Italy that represents a meaningful local example of land-use pattern in a Mediterranean environment. A core set of selected indicators and indexes applied to the database produced by GIS was used first to evaluate the landscape naturalness for each phyto-climatic unit and then to calculate the naturalness consumption. Moreover, the landscape biodiversity of each phyto-climate was evaluated, considering the ecomosaic space organization and taking into account the presence of some important ecological structures like ecotones and hedges. In the naturalness analysis, the highest naturalness consumption occurred in phyto-climates with a higher presence of cultivated areas. In the biodiversity analysis, the phyto-climates with a lower naturalness and a higher presence of agricultural land showed higher values of landscape biodiversity in comparison with the other phyto-climatic units. The results suggest that biodiversity in agro-ecosystems can compensate for naturalness consumption in terms of landscape sustainability. Indeed, natural landscapes carry out a conservative role, while more bio-diverse landscapes offer a balance between human requirements and native ecosystem conditions in a frame of co-evolutionary development

    Aspects of geodesical motion with Fisher-Rao metric: classical and quantum

    Full text link
    The purpose of this article is to exploit the geometric structure of Quantum Mechanics and of statistical manifolds to study the qualitative effect that the quantum properties have in the statistical description of a system. We show that the end points of geodesics in the classical setting coincide with the probability distributions that minimise Shannon's Entropy, i.e. with distributions of zero dispersion. In the quantum setting this happens only for particular initial conditions, which in turn correspond to classical submanifolds. This result can be interpreted as a geometric manifestation of the uncertainty principle.Comment: 15 pages, 5 figure

    Hamilton-Jacobi approach to Potential Functions in Information Geometry

    Get PDF
    The search for a potential function SS allowing to reconstruct a given metric tensor gg and a given symmetric covariant tensor TT on a manifold M\mathcal{M} is formulated as the Hamilton-Jacobi problem associated with a canonically defined Lagrangian on TMT\mathcal{M}. The connection between this problem, the geometric structure of the space of pure states of quantum mechanics, and the theory of contrast functions of classical information geometry is outlined.Comment: 16 pages. A discussion on the Kullback-Leibler divergence has been added. To appear in Journal of Mathematical Physic

    Experimental Analysis of the Near Wake from a Ducted Thruster at True and Near Bollard Pull Conditions Using Stereo Particle Image Velocimetry (SPIV)

    Get PDF
    Thrusters working at low advance coefficients are employed in a wide range of offshore and marine applications on Floating, Production, Storage, and Offloading (FPSO) systems;shuttle tankers; tug boats; and mobile offshore units. Therefore, an understanding of the flow around the thrusters is of great practical interest. Despite this interest, there is lack of knowledge in the description of the hydrodynamic characteristics of a ducted thruster\u27s wake at bollard pull and low advance coefficient values. This work was aimed at providing detailed data about the hydrodynamic characteristics of a Dynamic Positioning (DP) thruster near wake flow at different low advance coefficient values. Wake measurements were made during cavitation tunnel tests carried out on a ducted propeller model at the Italian Ship Model Basin (INSEAN), Rome, Italy. Through these experiments,th e DP thruster near wake velocity components at different downstream axial planes, up to 1.5 diameters downstream, were obtained using a Stereoscopic Particle Image Velocimetry (SPIV) system. These experiments were carried out at different advanceoefficient sJd values [bollard pull sJ=0d, J=0.4 and J=0.45]

    The Specialist Committee on Wake Fields Final Reports and Recommendations to the 25th ITTC

    Get PDF
    The recommended actions of 25th ITTC Specialist Committee on Wake-Fields, as stated above are focused on two main areas, the review of the numerical prediction and experimental measurement (methods) of wakefields and the review and development of ITTC procedures

    Propeller Cavitation in Non-Uniform Flow and Correlation with the Near Pressure Field

    Get PDF
    An experimental study is carried out in a cavitation tunnel on a propeller operating downstream of a non-uniform wake. The goal of this work is to establish quantitative correlations between the near pressure field and the cavitation pattern that takes place on the propeller blades. The pressure field is measured at the walls of the test section and in the near wake of the propeller and is combined with quantitative high-speed image recording of the cavitation pattern. Through harmonic analysis of the pressure data and image processing techniques that allow retrieving the cavitation extension and volume, we discuss the potential sources that generate the pressure fluctuations. Time correlations are unambiguously established between pressure peak fluctuations and cavitation collapse events, based on the Rayleigh collapse time. Finally, we design a model to predict the cavitation-induced pressure fluctuations from the derivation of the cavitation volume acceleration. A remarkable agreement is observed with the actual pressure field
    corecore