4,214 research outputs found
Psychological Impact in Healthcare Workers During Emergencies: The Italian Experience With COVID-19 First Wave
Background: The COVID-19 outbreak imposed an overwhelming workload as well as emotional burdens on Healthcare workers (HCWs). In May 2020, an online survey was administered to HCWs in Italy to assess the pandemic's psychological impact and to investigate possible predictive factors that led to individual differences.
Methods: The psychological experience was measured based on the prevalence of self-reported feelings during the pandemic, including negative and positive emotional states. We analyzed the relationship between factors of gender, age, geographic region, professional role, and operational unit, and the four-point scale used to rate the frequency of each emotional state experienced by performing several multinomial logistic regressions, one for each emotion.
Results: Our findings suggest that more than half of HCWs experienced psychological distress during the first COVID-19 outbreak in Italy. Female and younger respondents, especially those operating in northern Italy experienced more frequently negative emotional states such as irritability, anxiety, loneliness, and insecurity. However, positive feelings, first of all solidarity, were also reported especially by female and older workers. The majority of the negative as well as positive emotional states were experienced almost equally by both doctors and nurses, and independently of the operational unit in which they operated.
Conclusions: This study can be very useful as a contribution to the current literature on the psychological effects of this pandemic on health workers. Moreover, our findings can provide useful information in planning more tailored psychological interventions to support this category of workers in the ongoing and future emergencies
hMENA11a contributes to HER3-mediated resistance to PI3K inhibitors in HER2-overexpressing breast cancer cells.
Human Mena (hMENA), an actin regulatory protein of the ENA/VASP family, cooperates with ErbB receptor family signaling in breast cancer. It is overexpressed in high-risk preneoplastic lesions and in primary breast tumors where it correlates with HER2 overexpression and an activated status of AKT and MAPK. The concomitant overexpression of hMENA and HER2 in breast cancer patients is indicative of a worse prognosis. hMENA is expressed along with alternatively expressed isoforms, hMENA11a and hMENAΔv6 with opposite functions. A novel role for the epithelial-associated hMENA11a isoform in sustaining HER3 activation and pro-survival pathways in HER2-overexpressing breast cancer cells has been identified by reverse phase protein array and validated in vivo in a series of breast cancer tissues. As HER3 activation is crucial in mechanisms of cell resistance to PI3K inhibitors, we explored whether hMENA11a is involved in these resistance mechanisms. The specific hMENA11a depletion switched off the HER3-related pathway activated by PI3K inhibitors and impaired the nuclear accumulation of HER3 transcription factor FOXO3a induced by PI3K inhibitors, whereas PI3K inhibitors activated hMENA11a phosphorylation and affected its localization. At the functional level, we found that hMENA11a sustains cell proliferation and survival in response to PI3K inhibitor treatment, whereas hMENA11a silencing increases molecules involved in cancer cell apoptosis. As shown in three-dimensional cultures, hMENA11a contributes to resistance to PI3K inhibition because its depletion drastically reduced cell viability upon treatment with PI3K inhibitor BEZ235. Altogether, these results indicate that hMENA11a in HER2-overexpressing breast cancer cells sustains HER3/AKT axis activation and contributes to HER3-mediated resistance mechanisms to PI3K inhibitors. Thus, hMENA11a expression can be proposed as a marker of HER3 activation and resistance to PI3K inhibition therapies, to select patients who may benefit from these combined targeted treatments. hMENA11a activity could represent a new target for antiproliferative therapies in breast cancer
Synthetic Spectra and Color-Temperature Relations of M Giants
As part of a project to model the integrated spectra and colors of elliptical
galaxies through evolutionary synthesis, we have refined our synthetic spectrum
calculations of M giants. After critically assessing three effective
temperature scales for M giants, we adopted the relation of Dyck et al. (1996)
for our models. Using empirical spectra of field M giants as a guide, we then
calculated MARCS stellar atmosphere models and SSG synthetic spectra of these
cool stars, adjusting the band absorption oscillator strengths of the TiO bands
to better reproduce the observational data. The resulting synthetic spectra are
found to be in very good agreement with the K-band spectra of stars of the
appropriate spectral type taken from Kleinmann & Hall (1986) as well. Spectral
types estimated from the strengths of the TiO bands and the depth of the
bandhead of CO near 2.3 microns quantitatively confirm that the synthetic
spectra are good representations of those of field M giants. The broad-band
colors of the models match the field relations of K and early-M giants very
well; for late-M giants, differences between the field-star and synthetic
colors are probably caused by the omission of spectral lines of VO and water in
the spectrum synthesis calculations. Here, we present four grids of K-band
bolometric corrections and colors -- Johnson U-V and B-V; Cousins V-R and V-I;
Johnson-Glass V-K, J-K and H-K; and CIT/CTIO V-K, J-K, H-K and CO -- for models
having 3000 K < Teff < 4000 K and -0.5 < log g < 1.5. These grids, which have
[Fe/H] = +0.25, 0.0, -0.5 and -1.0, extend and supplement the color-temperature
relations of hotter stars presented in a companion paper (astro-ph/9911367).Comment: To appear in the March 2000 issue of the Astronomical Journal. 60
pages including 15 embedded postscript figures (one page each) and 6 embedded
postscript tables (10 pages total
Energy recovery from vinery waste: Dust explosion issues
The concern about global warming issues and their consequences is more relevant than ever, and the H2020 objectives promoted by the EU are oriented towards generating climate actions and sustainable development. The energy sector constitutes a difficult challenge as it plays a key role in the global warming impact. Its decarbonization is a crucial factor, and significant efforts are needed to find efficient alternatives to fossil fuels in heating/electricity generation. The biomass energy industry could have a contribution to make in the shift to renewable sources; the quest for a suitable material is basically focused on the energy amount that it stores, its availability, logistical considerations, and safety issues. This work deals with the characterization of a wine-waste dust sample, in terms of its chemical composition, fire behavior, and explosion violence. This material could be efficiently used in energy generation (via direct burning as pellets), but scarce information is present in terms of the fire and explosion hazards when it is pulverized. In the following, the material is analyzed through different techniques in order to clearly understand its ignition sensitivity and fire effects; accelerating aging treatment is also used to simulate the sample storage life and determine the ways in which this affects its flammability and likelihood of explosion
Biomass from winery waste: Evaluation of dust explosion hazards
Food and drink supply chains have significant environmental impacts due to their use of resources, emissions, and waste production. An efficient method to reduce this impact is the valorisation of biomass waste through energy recovery by using it as a source of heat. The European energy system faces several fundamental challenges being currently the largest emitter of greenhouse gases due to its large dependence on fossil fuels (mostly natural gas). Therefore, the energy sector's decarbonization will play a central role in achieving a climateneutral economy in Europe. Identifying the suitable material for biofuel is basically focused on the amount of energy that the material stores, availability, and logistic considerations. Sawdust and wood chips have been extensively used as biofuel in recent years, but other promising raw and waste materials could be adopted (with the positive effect of reducing the impact on forestry soil and the food chain). Novel materials bring consequently novel challenges, also regarding their safe use. As an example, a relevant waste flow is produced from wine manufacturing. A solid with high moisture content is obtained from grapes pressing, and it could be reused to produce distillates. The obtained exhausted pomace could be considered among the materials potentially involved in energy recovery. It is also carrying dust explosion hazard, as solid residues could be present in the form of coarse and fine powders. In this work, grape pomace is examined: its explosion safety-related properties are evaluated to define the severity of events in which this material could be ignited. Minimum Ignition Energy (MIE), explosion pressure peak (Pmax), deflagration severity index (KSt), autoignition temperature (MIT), and Volatile Point (VP) are measured according to standard procedures. This material's thermal susceptibility and ignition sensitivity are studied and compared with biomasses from different sources (ligneo-cellulosic and herbaceous)
Clinical implications of malnutrition in the management of patients with pancreatic cancer: Introducing the concept of the nutritional oncology board
Pancreatic cancer represents a very challenging disease, with an increasing incidence and an extremely poor prognosis. Peculiar features of this tumor entity are represented by pancreatic exocrine insufficiency and an early and intense nutritional imbalance, leading to the highly prevalent and multifactorial syndrome known as cancer cachexia. Recently, also the concept of sarcopenic obesity has emerged, making the concept of pancreatic cancer malnutrition even more multifaceted and complex. Overall, these nutritional derangements play a pivotal role in contributing to the dismal course of this malignancy. However, their relevance is often underrated and their assessment is rarely applied in clinical daily practice with relevant negative impact for patients’ outcome in neoadjuvant, surgical, and metastatic settings. The proper detection and management of pancreatic cancer-related malnutrition syndromes are of primary importance and deserve a specific and multidisciplinary (clinical nutrition, oncology, etc.) approach to improve survival, but also the quality of life. In this context, the introduction of a “Nutritional Oncology Board” in routine daily practice, aimed at assessing an early systematic screening of patients and at implementing nutritional support from the time of disease diagnosis onward seems to be the right path to take
Radiations and female fertility
Hundreds of thousands of young women are diagnosed with cancer each year, and due to recent advances in screening programs, diagnostic methods and treatment options, survival rates have significantly improved. Radiation therapy plays an important role in cancer treatment and in some cases it constitutes the first therapy proposed to the patient. However, ionizing radiations have a gonadotoxic action with long-term effects that include ovarian insufficiency, pubertal arrest and subsequent infertility. Cranial irradiation may lead to disruption of the hypothalamic-pituitary-gonadal axis, with consequent dysregulation of the normal hormonal secretion. The uterus might be damaged by radiotherapy, as well. In fact, exposure to radiation during childhood leads to altered uterine vascularization, decreased uterine volume and elasticity, myometrial fibrosis and necrosis, endometrial atrophy and insufficiency. As radiations have a relevant impact on reproductive potential, fertility preservation procedures should be carried out before and/or during anticancer treatments. Fertility preservation strategies have been employed for some years now and have recently been diversified thanks to advances in reproductive biology. Aim of this paper is to give an overview of the various effects of radiotherapy on female reproductive function and to describe the current fertility preservation options
Multimodal approach of advanced gastric cancer: Based therapeutic algorithm
Gastric cancer (GC) is the third leading cause of cancer death in both sexes worldwide, with the highest estimated mortality rates in Eastern Asia and the lowest in Northern America. However, the availability of modern treatment has improved the survival and the prognosis is often poor due to biological characteristics of the disease. In oncology, we are living in the "Era" of target treatment and, to know biological aspects, prognostic factors and predictive response informations to therapy in GC is mandatory to apply the best strategy of treatment. The purpose of this review, according to the recently published English literature, is to summarize existing data on prognostic aspects and predictive factors to response to therapy in GC and to analyze also others therapeutic approaches (surgery and radiotherapy) in locally, locally advanced and advanced GC. Moreover, the multidisciplinary approach (chemotherapy, surgery and radiotherapy) can improve the prognosis of GC
- …