31 research outputs found

    Mean first passage time for fission potentials having structure

    Full text link
    A schematic model of over-damped motion is presented which permits one to calculate the mean first passage time for nuclear fission. Its asymptotic value may exceed considerably the lifetime suggested by Kramers rate formula, which applies only to very special, favorable potentials and temperatures. The additional time obtained in the more general case is seen to allow for a considerable increment in the emission of light particles.Comment: 7 pages, LaTex, 7 postscript figures; Keywords: Decay rate, mean first passage tim

    Compilation of Giant Electric Dipole Resonances Built on Excited States

    Get PDF
    Giant Electric Dipole Resonance (GDR) parameters for gamma decay to excited states with finite spin and temperature are compiled. Over 100 original works have been reviewed and from some 70 of which more than 300 parameter sets of hot GDR parameters for different isotopes, excitation energies, and spin regions have been extracted. All parameter sets have been brought onto a common footing by calculating the equivalent Lorentzian parameters. The current compilation is complementary to an earlier compilation by Samuel S. Dietrich and Barry L. Berman (At. Data Nucl. Data Tables 38(1988)199-338) on ground-state photo-neutron and photo-absorption cross sections and their Lorentzian parameters. A comparison of the two may help shed light on the evolution of GDR parameters with temperature and spin. The present compilation is current as of January 2006.Comment: 31 pages including 1 tabl

    Nuclear fission: The "onset of dissipation" from a microscopic point of view

    Get PDF
    Semi-analytical expressions are suggested for the temperature dependence of those combinations of transport coefficients which govern the fission process. This is based on experience with numerical calculations within the linear response approach and the locally harmonic approximation. A reduced version of the latter is seen to comply with Kramers' simplified picture of fission. It is argued that for variable inertia his formula has to be generalized, as already required by the need that for overdamped motion the inertia must not appear at all. This situation may already occur above T=2 MeV, where the rate is determined by the Smoluchowski equation. Consequently, comparison with experimental results do not give information on the effective damping rate, as often claimed, but on a special combination of local stiffnesses and the friction coefficient calculated at the barrier.Comment: 31 pages, LaTex, 9 postscript figures; final, more concise version, accepted for publication in PRC, with new arguments about the T-dependence of the inertia; e-mail: [email protected]

    Viscosity and fission time scale of^{156}Dy

    Get PDF
    In the fusion-fission reaction Ar-40+Cd-116-->Dy-156-->fission, performed at beam energies E(b) = 216 MeV and 238 MeV, gamma rays were measured in coincidence with fission fragments. The gamma-ray spectra are interpreted using a modified version of the statistical-model code CASCADE. From a comparison of the experimental and calculated spectra it is deduced that the nuclear viscosity is in the range 0.01 <gamma <4. The extracted fission time scale is of the order of 10(-19) s

    Quasi-fission reactions as a probe of nuclear viscosity

    Full text link
    Fission fragment mass and angular distributions were measured from the ^{64}Ni+^{197}Au reaction at 418 MeV and 383 MeV incident energy. A detailed data analysis was performed, using the one-body dissipation theory implemented in the code HICOL. The effect of the window and the wall friction on the experimental observables was investigated. Friction stronger than one-body was also considered. The mass and angular distributions were consistent with one-body dissipation. An evaporation code DIFHEAT coupled to HICOL was developed in order to predict reaction time scales required to describe available data on pre-scission neutron multiplicities. The multiplicity data were again consistent with one-body dissipation. The cross-sections for touch, capture and quasi-fission were also obtained.Comment: 25 pages REVTeX, 3 tables, 13 figures, submitted to Phys. Rev
    corecore