26 research outputs found

    Preclinical antimalarial combination studies: the case of M5717, a P. falciparum elongation factor 2 inhibitor and pyronaridine, a hemozoin formation inhibitor

    Get PDF
    Antimalarial drug resistance in the; Plasmodium falciparum; parasite poses a constant challenge for drug development. To mitigate this risk, new antimalarial medicines should be developed as fixed-dose combinations. Assessing the pharmacodynamic interactions of potential antimalarial drug combination partners during early phases of development is essential in developing the targeted parasitological and clinical profile of the final drug product. Here, we have studied the combination of M5717, a; P. falciparum; translation elongation factor 2 inhibitor, and pyronaridine, an inhibitor of hemozoin formation. Our test cascade consisted of; in vitro; isobolograms as well as; in vivo; studies in the; P. falciparum; severe combined immunodeficient (SCID) mouse model. We also analyzed pharmacokinetic and pharmacodynamic parameters, including genomic sequencing of recrudescent parasites. We observed no pharmacokinetic interactions with the combination of M5717 and pyronaridine. M5717 did not negatively impact the rate of kill of the faster-acting pyronaridine, and the latter was able to suppress the selection of M5717-resistant mutants, as well as significantly delay the recrudescence of parasites both with suboptimal and optimal dosing regimens

    A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine

    Get PDF
    Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisininbased combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nucleasebased gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90) or 50% parasite killing (50% lethal dose [LD50]). This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bisaminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates

    A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine

    Get PDF
    Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90) or 50% parasite killing (50% lethal dose [LD50]). This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates

    Safety, pharmacokinetics, and antimalarial activity of the novel plasmodium eukaryotic translation elongation factor 2 inhibitor M5717: a first-in-human, randomised, placebo-controlled, double-blind, single ascending dose study and volunteer infection study

    Get PDF
    M5717 is the first plasmodium translation elongation factor 2 inhibitor to reach clinical development as an antimalarial. We aimed to characterise the safety, pharmacokinetics, and antimalarial activity of M5717 in healthy volunteers. This first-in-human study was a two-part, single-centre clinical trial done in Brisbane, QLD, Australia. Part one was a double-blind, randomised, placebo-controlled, single ascending dose study in which participants were enrolled into one of nine dose cohorts (50, 100, 200, 400, 600, 1000, 1250, 1800, or 2100 mg) and randomly assigned (3:1) to M5717 or placebo. A sentinel dosing strategy was used for each dose cohort whereby two participants (one assigned to M5717 and one assigned to placebo) were initially randomised and dosed. Randomisation schedules were generated electronically by independent, unblinded statisticians. Part two was an open-label, non-randomised volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model in which participants were enrolled into three dose cohorts. Healthy men and women of non-childbearing potential aged 18-55 years were eligible for inclusion; individuals in the volunteer infection study were required to be malaria naive. Safety and tolerability (primary outcome of the single ascending dose study and secondary outcome of the volunteer infection study) were assessed by frequency and severity of adverse events. The pharmacokinetic profile of M5717 was also characterised (primary outcome of the volunteer infection study and secondary outcome of the single ascending dose study). Parasite clearance kinetics (primary outcome of the volunteer infection study) were assessed by the parasite reduction ratio and the corresponding parasite clearance half-life; the incidence of recrudescence up to day 28 was determined (secondary outcome of the volunteer infection study). Recrudescent parasites were tested for genetic mutations (exploratory outcome). The trial is registered with ClinicalTrials.gov (NCT03261401). Between Aug 28, 2017, and June 14, 2019, 221 individuals were assessed for eligibility, of whom 66 men were enrolled in the single ascending dose study (eight per cohort for 50-1800 mg cohorts, randomised three M5717 to one placebo, and two in the 2100 mg cohort, randomised one M5717 to one placebo) and 22 men were enrolled in the volunteer infection study (six in the 150 mg cohort and eight each in the 400 mg and 800 mg cohorts). No adverse event was serious; all M5717-related adverse events were mild or moderate in severity and transient, with increased frequency observed at doses above 1250 mg. In the single ascending dose study, treatment-related adverse events occurred in three of 17 individuals in the placebo group; no individual in the 50 mg, 100 mg, or 200 mg groups; one of six individuals in each of the 400 mg, 1000 mg, and 1250 mg groups; two of six individuals in the 600 mg group; and in all individuals in the 1800 mg and 2100 mg groups. In the volunteer infection study, M5717-related adverse events occurred in no participants in the 150 mg or 800 mg groups and in one of eight participants in the 400 mg group. Transient oral hypoesthesia (in three participants) and blurred vision (in four participants) were observed in the 1800 mg or 2100 mg groups and constituted an unknown risk; thus, further dosing was suspended after dosing of the two sentinel individuals in the 2100 mg cohort. Maximum blood concentrations occurred 1-7 h after dosing, and a long half-life was observed (146-193 h at doses ≥200 mg). Parasite clearance occurred in all participants and was biphasic, characterised by initial slow clearance lasting 35-55 h (half-life 231·1 h [95% CI 40·9 to not reached] for 150 mg, 60·4 h [38·6 to 138·6] for 400 mg, and 24·7 h [20·4 to 31·3] for 800 mg), followed by rapid clearance (half-life 3·5 h [3·1 to 4·0] for 150 mg, 3·9 h [3·3 to 4·8] for 400 mg, and 5·5 h [4·8 to 6·4] for 800 mg). Recrudescence occurred in three (50%) of six individuals dosed with 150 mg and two (25%) of eight individuals dosed with 400 mg. Genetic mutations associated with resistance were detected in four cases of parasite recrudescence (two individuals dosed with 150 mg and two dosed with 400 mg). The safety, pharmacokinetics, and antimalarial activity of M5717 support its development as a component of a single-dose antimalarial combination therapy or for malaria prophylaxis. Wellcome Trust and the healthcare business of Merck KGaA, Darmstadt, Germany. [Abstract copyright: Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

    Integrative Genetic Manipulation of Plasmodium cynomolgi Reveals Multidrug Resistance-1 Y976F Associated With Increased In Vitro Susceptibility to Mefloquine

    Get PDF
    The lack of a long-term in vitro culture method has severely restricted the study of Plasmodium vivax, in part because it limits genetic manipulation and reverse genetics. We used the recently optimized Plasmodium cynomolgi Berok in vitro culture model to investigate the putative P. vivax drug resistance marker MDR1 Y976F. Introduction of this mutation using clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9) increased sensitivity to mefloquine, but had no significant effect on sensitivity to chloroquine, amodiaquine, piperaquine, and artesunate. To our knowledge, this is the first reported use of CRISPR-Cas9 in P. cynomolgi, and the first reported integrative genetic manipulation of this species

    Involvement of phytochrome(s), Ca<SUP>2+</SUP> and phosphorylation in light-dependent control of transcript levels for plastid genes (psbA, psaA and rbcL) in rice (Oryza sativa)

    No full text
    In the present investigation, an attempt has been made to understand the mechanism of light signal transduction in regulation of steady-state transcript levels of the plastid genes psbA, psaA and rbcL in rice (Oryza sativa L. ssp. indica cv. Pusa 169) seedlings. Red light irradiation of 5-day-old etiolated seedlings for 5 min upregulates the transcript levels of the above-mentioned plastid genes, while far-red light exposure subsequent to red light reverses this effect, indicating the involvement of phytochrome(s). Ca2+ and the Ca2+ ionophore, A23187 increase the level of transcripts in the dark-grown seedlings. Ca2+ chelators (EGTA and BAPTA) as well as Ca2+ channel blockers (nifedipine and verapamil) suppress the accumulation of all transcripts in light. This suggests the involvement of Ca2+ in the photoregulation of plastid genes. Okadaic acid, a specific inhibitor of protein phosphatase 1 and 2A (PP1 and PP2A), and sodium fluoride (NaF), a general inhibitor of protein phosphatases, significantly prevent the light-induced increase in transcript levels of the plastid genes. Staurosporine, a protein kinase inhibitor, causes an increase in the transcript levels in darkness and a further enhancement in conjunction with light. The results suggest that light signal transduction downstream to phytochrome(s) involves Ca2+ and phosphorylation for controlling the pattern of plastid gene expression. Phosphorylation inhibits light-activated gene expression in chloroplasts

    Global Spread of Mutant PfCRT and Its Pleiotropic Impact on Plasmodium falciparum Multidrug Resistance and Fitness

    No full text
    Our study defines the allelic distribution of pfcrt, an important mediator of multidrug resistance in Plasmodium falciparum, in Africa and Asia. We leveraged whole-genome sequence analysis and gene editing to demonstrate how current drug combinations can select different allelic variants of this gene and shape region-specific parasite population structures. We document the ability of PfCRT mutations to modulate parasite susceptibility to current antimalarials in dissimilar, pfcrt allele-specific ways. This study underscores the importance of actively monitoring pfcrt genotypes to identify emerging patterns of multidrug resistance and help guide region-specific treatment options.The global spread of Plasmodium falciparum chloroquine resistance transporter (PfCRT) variant haplotypes earlier caused the widespread loss of chloroquine (CQ) efficacy. In Asia, novel PfCRT mutations that emerged on the Dd2 allelic background have recently been implicated in high-level resistance to piperaquine, and N326S and I356T have been associated with genetic backgrounds in which resistance emerged to artemisinin derivatives. By analyzing large-scale genome sequencing data, we report that the predominant Asian CQ-resistant Dd2 haplotype is undetectable in Africa. Instead, the GB4 and previously unexplored Cam783 haplotypes predominate, along with wild-type, drug-sensitive PfCRT that has reemerged as the major haplotype. To interrogate how these alleles impact drug susceptibility, we generated pfcrt-modified isogenic parasite lines spanning the mutational interval between GB4 and Dd2, which includes Cam783 and involves amino acid substitutions at residues 326 and 356. Relative to Dd2, the GB4 and Cam783 alleles were observed to mediate lower degrees of resistance to CQ and the first-line drug amodiaquine, while resulting in higher growth rates. These findings suggest that differences in growth rates, a surrogate of parasite fitness, influence selection in the context of African infections that are frequently characterized by high transmission rates, mixed infections, increased immunity, and less recourse to treatment. We also observe that the Asian Dd2 allele affords partial protection against piperaquine yet does not directly impact artemisinin efficacy. Our results can help inform the regional recommendations of antimalarials, whose activity is influenced by and, in certain cases, enhanced against select PfCRT variant haplotypes

    Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt.

    No full text
    Comment in : Fusion of field studies and the laboratory solves a puzzle in antimalarial resistance. [Proc Natl Acad Sci U S A. 2015]International audienceIn regions with high malaria endemicity, the withdrawal of chloroquine (CQ) as first-line treatment of Plasmodium falciparum infections has typically led to the restoration of CQ susceptibility through the reexpansion of the wild-type (WT) allele K76 of the chloroquine resistance transporter gene (pfcrt) at the expense of less fit mutant alleles carrying the CQ resistance (CQR) marker K76T. In low-transmission settings, such as South America, drug resistance mutations can attain 100% prevalence, thereby precluding the return of WT parasites after the complete removal of drug pressure. In French Guiana, despite the fixation of the K76T allele, the prevalence of CQR isolates progressively dropped from >90% to <30% during 17 y after CQ withdrawal in 1995. Using a genome-wide association study with CQ-sensitive (CQS) and CQR isolates, we have identified a single mutation in pfcrt encoding a C350R substitution that is associated with the restoration of CQ susceptibility. Genome editing of the CQR reference strain 7G8 to incorporate PfCRT C350R caused a complete loss of CQR. A retrospective molecular survey on 580 isolates collected from 1997 to 2012 identified all C350R mutant parasites as being CQS. This mutation emerged in 2002 and rapidly spread throughout the P. falciparum population. The C350R allele is also associated with a significant decrease in piperaquine susceptibility in vitro, suggesting that piperaquine pressure in addition to potential fitness costs associated with the 7G8-type CQR pfcrt allele may have selected for this mutation. These findings have important implications for understanding the evolutionary dynamics of antimalarial drug resistance

    Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter

    No full text
    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-hos
    corecore