639 research outputs found

    Dynamic Response and Static Analysis of RCC Space Frames Supporting High Speed Centrifugal Machines with Coupled Soil-Structure Interaction

    Get PDF
    The paper reviews the current state of the art on the dynamic and static analyses of RCC space frames supporting high speed centrifugal machines e.g. large turbogenerators and compressors. The need to include the effects of soil-structure interaction formulations on overall behaviour of various analytical models are highlighted, At the same time, the uncertainties involved in evaluating essential geotechnical parameters and paucity of reliable and elaborate information from the machine manufacturers are discussed. The analysis and design aspects of this inter-disciplinary problem are illustrated with two typical design case studies selected from authors’ own experience in this specialised field. The paper also discusses the usefulness, if any, of such rigorous analysis and identifies various shortcomings which still persist in finalising realistic design data and adopting suitable models to represent machine foundation-soil system

    On the role of different Skyrme forces and surface corrections in exotic cluster-decay

    Full text link
    We present cluster decay studies of 56^{56}Ni^* formed in heavy-ion collisions using different Skyrme forces. Our study reveals that different Skyrme forces do not alter the transfer structure of fractional yields significantly. The cluster decay half-lives of different clusters lies within \pm 10% for PCM and \pm 15% for UFM.Comment: 13 pages,6 figures and 1 table; in press Pramana Journal of Physics (2010

    Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH

    Get PDF
    The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) signals during cellular stress via several post-translational modifications that change its folding properties, protein-protein interactions and sub-cellular localization. We examined GAPDH properties in acute mouse liver injury due to ethanol and/or acetaminophen (APAP) treatment. Synergistic robust and time-dependent nuclear accumulation and aggregation of GAPDH were observed only in combined, but not individual, ethanol/APAP treatments. The small molecule GAPDH-targeting compound TCH346 partially attenuated liver damage possibly via mitochondrial mechanisms, and independent of nuclear accumulation and aggregation of GAPDH. These findings provide a novel potential mechanism for hepatotoxicity caused by combined alcohol and acetaminophen exposure

    Droplet mobility on lubricant-impregnated surfaces

    Get PDF
    Non-wetting surfaces containing micro/nanotextures impregnated with lubricating liquids have recently been shown to exhibit superior non-wetting performance compared to superhydrophobic surfaces that rely on stable air–liquid interfaces. Here we examine the fundamental physico-chemical hydrodynamics that arise when droplets, immiscible with the lubricant, are placed on and allowed to move along these surfaces. We find that these four-phase systems show novel contact line morphology comprising a finite annular ridge of the lubricant pulled above the surface texture and consequently as many as three distinct 3-phase contact lines. We show that these distinct morphologies not only govern the contact line pinning that controls droplets' initial resistance to movement but also the level of viscous dissipation and hence their sliding velocity once the droplets begin to move.United States. Defense Advanced Research Projects Agency. Young Faculty AwardMassachusetts Institute of Technology. Energy InitiativeNational Science Foundation (U.S.). CAREER Award (0952564

    Influence of porosity and fibre diameter on the degradation of chitosan fibre-mesh scaffolds and cell adhesion

    Get PDF
    The state of the art approaches for tailoring the degradation of chitosan scaffolds are based on altering the chemical structure of the polymer. Nevertheless, such alterations may lead to changes in other properties of scaffolds, such as the ability to promote cell adhesion. The aim of this study was to investigate the influence of physical parameters such as porosity and fibre diameter on the degradation of chitosan fibre-mesh scaffolds, as a possible way of tailoring the degradation of such scaffolds. Four sets of scaffolds with distinct fibre diameter and porosity were produced and their response to degradation and cell adhesion was studied. The degradation study was carried out at 37"C in a lysozyme solution for five weeks. The extent of degradation was expressed as percentage of weight loss of the dried scaffolds after lysozyme treatment. Cell adhesion was assessed by Confocal Microscopy. The results have shown that the scaffolds with higher porosity degrade faster and that, within the same range of porosity, the fibres with smaller diameter degrade slightly faster. Furthermore, the morphological differences between the scaffolds did not affect the degree of cell adhesion, and the cells were observed throughout the thickness of all four types of scaffold

    Of cattle, sand flies and men : a systematic review of risk factor analyses for South Asian visceral leishmaniasis and implications for elimination

    Get PDF
    Background: Studies performed over the past decade have identified fairly consistent epidemiological patterns of risk factors for visceral leishmaniasis (VL) in the Indian subcontinent. Methods and Principal Findings: To inform the current regional VL elimination effort and identify key gaps in knowledge, we performed a systematic review of the literature, with a special emphasis on data regarding the role of cattle because primary risk factor studies have yielded apparently contradictory results. Because humans form the sole infection reservoir, clustering of kala-azar cases is a prominent epidemiological feature, both at the household level and on a larger scale. Subclinical infection also tends to show clustering around kala-azar cases. Within villages, areas become saturated over a period of several years; kala-azar incidence then decreases while neighboring areas see increases. More recently, post kalaazar dermal leishmaniasis (PKDL) cases have followed kala-azar peaks. Mud walls, palpable dampness in houses, and peridomestic vegetation may increase infection risk through enhanced density and prolonged survival of the sand fly vector. Bed net use, sleeping on a cot and indoor residual spraying are generally associated with decreased risk. Poor micronutrient status increases the risk of progression to kala-azar. The presence of cattle is associated with increased risk in some studies and decreased risk in others, reflecting the complexity of the effect of bovines on sand fly abundance, aggregation, feeding behavior and leishmanial infection rates. Poverty is an overarching theme, interacting with individual risk factors on multiple levels. Conclusions: Carefully designed demonstration projects, taking into account the complex web of interconnected risk factors, are needed to provide direct proof of principle for elimination and to identify the most effective maintenance activities to prevent a rapid resurgence when interventions are scaled back. More effective, short-course treatment regimens for PKDL are urgently needed to enable the elimination initiative to succeed

    Life-threatening hypersplenism due to idiopathic portal hypertension in early childhood: case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Idiopathic portal hypertension (IPH) is a disorder of unknown etiology and is characterized clinically by portal hypertension, splenomegaly, and hypersplenism accompanied by pancytopenia. This study evaluates the pathogenic concept of the disease by a systematic review of the literature and illustrates novel pathologic and laboratory findings.</p> <p>Case Presentation</p> <p>We report the first case of uncontrolled splenic hyperperfusion and enlargement with subsequent hypersplenism leading to life-threatening complications of IPH in infancy and emergent splenectomy.</p> <p>Conclusions</p> <p>Our results suggest that splenic NO and VCAM-1, rather than ET-1, have a significant impact on the development of IPH, even at a very early stage of disease. The success of surgical interventions targeting the splenic hyperperfusion suggests that the primary defect in the regulation of splenic blood flow seems to be crucial for the development of IPH. Thus, beside other treatment options splenectomy needs to be considered as a prime therapeutic option for IPH.</p

    The systematic study of the influence of neutron excess on the fusion cross sections using different proximity-type potentials

    Full text link
    Using different types of proximity potentials, we have examined the trend of variations of barrier characteristics (barrier height and its position) as well as fusion cross sections for 50 isotopic systems including various collisions of C, O, Mg, Si, S, Ca, Ar, Ti and Ni nuclei with 1N/Z<1.61\leq N/Z < 1.6 condition for compound systems. The results of our studies reveal that the relationships between increase of barrier positions and decrease of barrier heights are both linear with increase of N/ZN/Z ratio. Moreover, fusion cross sections also enhance linearly with increase of this ratio.Comment: 28 pages, 7 figures, 5 Table

    Global Metabolomic Profiling of Acute Myocarditis Caused by Trypanosoma cruzi Infection

    Get PDF
    © 2014 Gironès et al. Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients.This work was supported by ‘‘Ministerio de Ciencia e Innovación’’ (SAF2010-17833); ‘‘Fondo de Investigaciones Sanitarias’’ (PS09/00538 and PI12/00289); ‘‘Red de Investigación de Centros de Enfermedades Tropicales’’ (RICET RD12/0018/0004); European Union (HEALTH-FE-2008-22303, ChagasEpiNet);‘‘Universidad Autónoma de Madrid’’ and ‘‘Comunidad de Madrid’’ (CC08-UAM/SAL-4440/08); AECID Cooperation with Argentine (A/025417/09 and A/031735/10), Comunidad de Madrid (S-2010/BMD-2332) and ‘‘Fundación Ramón Areces’Peer Reviewe
    corecore