18 research outputs found

    The dynamic response of edge clamped plates loaded by spherically expanding sand shells

    No full text
    The dynamic deformation of both edge clamped stainless steel sandwich panels with a pyramidal truss core and equal mass monolithic plates loaded by spherically expanding shells of dry and water saturated sand has been investigated, both experimentally and via a particle based simulation methodology. The spherically expanding sand shell is generated by detonating a sphere of explosive surrounded by a shell of either dry or water saturated synthetic sand. The measurements show that the sandwich panel and plate deflections decrease with increasing stand-off between the center of the charge and the front of the test structures. Moreover, for the same charge and sand mass, the deflections of the plates are significantly higher in the water saturated sand case compared to that of dry sand. For a given stand-off, the mid-span deflection of the sandwich panel rear faces was substantially less than that of the corresponding monolithic plate for both the dry and water saturated sand cases. The experiments were simulated via a coupled discrete-particle/ finite element scheme wherein the high velocity impacting sand is modeled by interacting particles while the plate is modeled within a Lagrangian finite element setting. The simulations are in good agreement with the measurements for the dry sand impact of both the monolithic and sandwich structures. However, the simulations underestimate the effect of stand-off in the case of the water saturated sand explosion, i.e. the deflections decrease more sharply with increasing stand-off in the experiments compared to the simulations. The simulations reveal that the momentum transmitted into the sandwich and monolithic plate structures by the sand shell is approximately the same, consistent with a small fluid-structure interaction effect. The smaller deflection of the sandwich panels is therefore primarily due to the higher bending strength of sandwich structures. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Impact response of aluminum corrugated core sandwich panels

    Get PDF
    The mechanisms of projectile penetration of extruded 6061T6 aluminum alloy sandwich panels with empty and alumina filled, triangular corrugated cores have been experimentally investigated using zero obliquity, 12.7 mm diameter hard steel projectiles whose diameter was about a half that of the core's unit cell width. We find that low momentum impacts are laterally deflected by interactions with the inclined webs of the empty core. Complete penetration occurred by shear-off within the impacted front face sheet, followed by stretching, bending and tensile fracture of the core webs and finally shear-off within the back face sheet. This combination of mechanisms was less effective at dissipating the projectiles kinetic energy than the shear-off (plugging) mechanism of penetration of the equivalent solid aluminum panel. Inserting ballistic grade alumina prisms in the triangular cross section spaces of the corrugated core significantly increased the panel's ballistic resistance compared to the empty panel. The presence of the hard ceramic led to severe plastic deformation and fragmentation of the projectile and comminution and macroscopic fracture of the ceramic. The Al/Al2O3 hybrid panel ballistic limit was reached when pairs of parallel cracks formed in the rear face sheet at core web-face sheet nodes. The separation distance between these cracks was dependent upon the location of the impact with respect to that of the web-face sheet nodes. Nodal impacts resulted in pairs of fractures that were separated by one cell width and a critical velocity below that of the equivalent solid plate. Impacts mid-way between pairs of nodes resulted in back face sheet crack pairs separated by twice the cell width, and a critical velocity higher than the equivalent solid plate. Using X-ray tomography we show this resulted from the formation of oval (not circular) cross section fracture conoids in the ceramics. The conoid angle was about 60 in the extrusion direction but only 30 in the transverse direction. This observation may have interesting consequences for a panel's resistance to a second, close proximity impact. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Effect of core topology on projectile penetration in hybrid aluminum/alumina sandwich structures

    Get PDF
    A series of hybrid sandwich structures were fabricated by shrink-fitting precision-ground prisms of alumina (CoorsTek grade AD 995) with triangular, trapezoidal or rectangular cross-sections into the voids of extruded sandwich panels made from Al 6061-T6. The panels were subjected to impact tests using hard steel spheres over the velocity range 570-1800 m s-1. A combination of X-ray tomography, high-speed video imaging and cross sectioning of impacted samples was used to investigate the penetration mechanisms. We find that the ballistic performance of these structures, characterized by the ballistic limit and the exit velocity of impact ejecta beyond this limit, is significantly improved when triangular prisms are replaced by trapezoidal prisms, provided the base width of the prism exceeds about three times the projectile diameter. Additional performance improvements are obtained when the trapezoidal prisms are replaced by rectangular prisms, albeit at the expense of an increase in the lateral extent of damage. The variations in impact response are found to arise from: (i) the effect of prism size and shape on the degree of confinement of the ceramic by the metallic webs, (ii) the core web structure, which influences the fracture conoid angle in the transverse plane, and (iii) the spacing of web-face nodes on the back face, which governs the deflection and fracture of the back-face sheet. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Blast Performance of Foam Filled Sandwich Panels Under Extreme Temperatures

    No full text
    An experimental investigation of the dynamic response of syntactic foam filled corrugated steel sandwich panels, subjected to shock loading at room and elevated temperatures, was performed. A shock tube apparatus was used to generate the shock loading. High speed photography coupled with 3D Digital Image Correlation (DIC) was used to obtain real time full-field deformation of the back face. An additional camera was used to capture side-view deformation images. Photo-optical techniques were incorporated to capture images during high temperature experiments. The shock pressure profiles and DIC analysis were used to obtain the impulse imparted on the specimen, transient deflections, in-plane strain, and out of plane velocity of the back face sheet. It was observed that using the syntactic foam as a filler material decreased the front face and back face deflections compared to an empty panel while maintaining a thermal gradient of at least 180 °C. As a consequence of temperature dependent properties of steel, the specimen demonstrated an increasing trend in back face deflection with increasing temperature. © The Society for Experimental Mechanics, Inc. 2015
    corecore