3,180 research outputs found

    Effect of Noise on Patterns Formed by Growing Sandpiles

    Full text link
    We consider patterns generated by adding large number of sand grains at a single site in an abelian sandpile model with a periodic initial configuration, and relaxing. The patterns show proportionate growth. We study the robustness of these patterns against different types of noise, \textit{viz.}, randomness in the point of addition, disorder in the initial periodic configuration, and disorder in the connectivity of the underlying lattice. We find that the patterns show a varying degree of robustness to addition of a small amount of noise in each case. However, introducing stochasticity in the toppling rules seems to destroy the asymptotic patterns completely, even for a weak noise. We also discuss a variational formulation of the pattern selection problem in growing abelian sandpiles.Comment: 15 pages,16 figure

    Numerical Diagonalisation Study of the Trimer Deposition-Evaporation Model in One Dimension

    Get PDF
    We study the model of deposition-evaporation of trimers on a line recently introduced by Barma, Grynberg and Stinchcombe. The stochastic matrix of the model can be written in the form of the Hamiltonian of a quantum spin-1/2 chain with three-spin couplings given by H= \sum\displaylimits_i [(1 - \sigma_i^-\sigma_{i+1}^-\sigma_{i+2}^-) \sigma_i^+\sigma_{i+1}^+\sigma_{i+2}^+ + h.c]. We study by exact numerical diagonalization of HH the variation of the gap in the eigenvalue spectrum with the system size for rings of size up to 30. For the sector corresponding to the initial condition in which all sites are empty, we find that the gap vanishes as LzL^{-z} where the gap exponent zz is approximately 2.55±0.152.55\pm 0.15. This model is equivalent to an interfacial roughening model where the dynamical variables at each site are matrices. From our estimate for the gap exponent we conclude that the model belongs to a new universality class, distinct from that studied by Kardar, Parisi and Zhang.Comment: 11 pages, 2 figures (included

    The Irreducible String and an Infinity of Additional Constants of Motion in a Deposition-Evaporation Model on a Line

    Get PDF
    We study a model of stochastic deposition-evaporation with recombination, of three species of dimers on a line. This model is a generalization of the model recently introduced by Barma {\it et. al.} (1993 {\it Phys. Rev. Lett.} {\bf 70} 1033) to q3q\ge 3 states per site. It has an infinite number of constants of motion, in addition to the infinity of conservation laws of the original model which are encoded as the conservation of the irreducible string. We determine the number of dynamically disconnected sectors and their sizes in this model exactly. Using the additional symmetry we construct a class of exact eigenvectors of the stochastic matrix. The autocorrelation function decays with different powers of tt in different sectors. We find that the spatial correlation function has an algebraic decay with exponent 3/2, in the sector corresponding to the initial state in which all sites are in the same state. The dynamical exponent is nontrivial in this sector, and we estimate it numerically by exact diagonalization of the stochastic matrix for small sizes. We find that in this case z=2.39±0.05z=2.39\pm0.05.Comment: Some minor errors in the first version has been correcte

    Nonequilibrium Phase Transitions in a Driven Sandpile Model

    Get PDF
    We construct a driven sandpile slope model and study it by numerical simulations in one dimension. The model is specified by a threshold slope \sigma_c\/, a parameter \alpha\/, governing the local current-slope relation (beyond threshold), and jinj_{\rm in}, the mean input current of sand. A nonequilibrium phase diagram is obtained in the \alpha\, -\, j_{\rm in}\/ plane. We find an infinity of phases, characterized by different mean slopes and separated by continuous or first-order boundaries, some of which we obtain analytically. Extensions to two dimensions are discussed.Comment: 11 pages, RevTeX (preprint format), 4 figures available upon requs

    Charge and Statistics of Quasiparticles in Fractional Quantum Hall Effec

    Full text link
    We have studied here the charge and statistics of quasiparticle excitations in FQH states on the basis of the Berry phase approach incorporating the fact that even number of flux quanta can be gauged away when the Berry phase is removed to the dynamical phase. It is observed that the charge qq and statistical parameter θ\theta of a quasiparticle at filling factor ν=n2pn+1\nu=\frac{n}{2pn+1} are given by q=(n2pn+1)eq=(\frac{n}{2pn+1})e and θ=n2pn+1\theta=\frac{n}{2pn+1}, with the fact that the charge of the quasihole is opposite to that of the quasielectron. Using Laughlin wave function for quasiparticles, numerical studies have been done following the work of Kj{\o}nsberg and Myrheim \cite{KM} for FQH states at ν=1/3\nu=1/3 and it is pointed out that as in case of quasiholes, the statistics parameter can be well defined for quasielectrons having the value θ=1/3\theta=1/3.Comment: 12 pages, 4 figure

    Quenched Averages for self-avoiding walks and polygons on deterministic fractals

    Full text link
    We study rooted self avoiding polygons and self avoiding walks on deterministic fractal lattices of finite ramification index. Different sites on such lattices are not equivalent, and the number of rooted open walks W_n(S), and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We use exact recursion equations on the fractal to determine the generating functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These are used to compute the averages ,,, , and <logWn(S)><log W_n(S)> over different positions of S. We find that the connectivity constant μ\mu, and the radius of gyration exponent ν\nu are the same for the annealed and quenched averages. However,  nlogμ+(αq2)logn ~ n log \mu + (\alpha_q -2) log n, and  nlogμ+(γq1)logn ~ n log \mu + (\gamma_q -1)log n, where the exponents αq\alpha_q and γq\gamma_q take values different from the annealed case. These are expressed as the Lyapunov exponents of random product of finite-dimensional matrices. For the 3-simplex lattice, our numerical estimation gives αq0.72837±0.00001 \alpha_q \simeq 0.72837 \pm 0.00001; and γq1.37501±0.00003\gamma_q \simeq 1.37501 \pm 0.00003, to be compared with the annealed values αa=0.73421\alpha_a = 0.73421 and γa=1.37522\gamma_a = 1.37522.Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic

    Tailoring symmetry groups using external alternate fields

    Full text link
    Macroscopic systems with continuous symmetries subjected to oscillatory fields have phases and transitions that are qualitatively different from their equilibrium ones. Depending on the amplitude and frequency of the fields applied, Heisenberg ferromagnets can become XY or Ising-like -or, conversely, anisotropies can be compensated -thus changing the nature of the ordered phase and the topology of defects. The phenomena can be viewed as a dynamic form of "order by disorder".Comment: 4 pages, 2 figures finite dimension and selection mechanism clarifie

    Heat conduction in one dimensional systems: Fourier law, chaos, and heat control

    Full text link
    In this paper we give a brief review of the relation between microscopic dynamical properties and the Fourier law of heat conduction as well as the connection between anomalous conduction and anomalous diffusion. We then discuss the possibility to control the heat flow.Comment: 15 pages, 11 figures. To be published in the Proceedings of the NATO Advanced Research Workshop on Nonlinear Dynamics and Fundamental Interactions, Tashkent, Uzbekistan, Octo. 11-16, 200

    Crossover phenomenon in self-organized critical sandpile models

    Full text link
    We consider a stochastic sandpile where the sand-grains of unstable sites are randomly distributed to the nearest neighbors. Increasing the value of the threshold condition the stochastic character of the distribution is lost and a crossover to the scaling behavior of a different sandpile model takes place where the sand-grains are equally transferred to the nearest neighbors. The crossover behavior is numerically analyzed in detail, especially we consider the exponents which determine the scaling behavior.Comment: 6 pages, 9 figures, accepted for publication in Physical Review

    Randmoness and Step-like Distribution of Pile Heights in Avalanche Models

    Full text link
    The paper develops one-parametric family of the sand-piles dealing with the grains' local losses on the fixed amount. The family exhibits the crossover between the models with deterministic and stochastic relaxation. The mean height of the pile is destined to describe the crossover. The height's densities corresponding to the models with relaxation of the both types tend one to another as the parameter increases. These densities follow a step-like behaviour in contrast to the peaked shape found in the models with the local loss of the grains down to the fixed level [S. Lubeck, Phys. Rev. E, 62, 6149, (2000)]. A spectral approach based on the long-run properties of the pile height considers the models with deterministic and random relaxation more accurately and distinguishes the both cases up to admissible parameter values.Comment: 5 pages, 5 figure
    corecore